Beyond Monocular Deraining: Parallel Stereo Deraining Network Via Semantic Prior
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barnum, P. C., Narasimhan, S., & Kanade, T. (2010). Analysis of rain and snow in frequency space. International Journal of Computer Vision (IJCV), 86, 256–274.
Brewer, N., & Liu, N. (2008). Using the shape characteristics of rain to identify and remove rain from video. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR).
Chang, J.R., & Chen, Y.S. (2018). Pyramid stereo matching network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Chen, Y.L., & Hsu, C.T. (2013). A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In Proceedings of the IEEE international conference on computer vision (ICCV).
Chen, C., Seff, A., Kornhauser, A., & Xiao, J. (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
Chen, J., Tan, C.H., Hou, J., Chau, L.P., & Li, H. (2018). Robust video content alignment and compensation for rain removal in a CNN framework. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2018). Stereoscopic neural style transfer. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Chen, J., & Chau, L. P. (2013). A rain pixel recovery algorithm for videos with highly dynamic scenes. IEEE Transactions on Image Processing (TIP), 23, 1097–1104.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016) The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Deng, S., Wei, M., Wang, J., Feng, Y., Liang, L., Xie, H., Wang, F.L., & Wang, M. (2020). Detail-recovery image deraining via context aggregation networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14560–14569.
Eigen, D., Krishnan, D., & Fergus, R. (2013). Restoring an image taken through a window covered with dirt or rain. In Proceedings of the IEEE international conference on computer vision (ICCV).
Eslami, S.A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G.E., et al. (2016). Attend, infer, repeat: Fast scene understanding with generative models. In Advances in Neural Information Processing Systems (NeurIPS).
Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., & Paisley, J. (2017) Removing rain from single images via a deep detail network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Fu, X., Huang, J., Ding, X., Liao, Y., & Paisley, J. (2017). Clearing the skies: A deep network architecture for single-image rain removal. IEEE Transactions on Image Processing (TIP), 26(6), 2944–2956.
Garg, K., & Nayar, S.K. (2004). Detection and removal of rain from videos. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Garg, K., & Nayar, S.K. (2006). Photorealistic rendering of rain streaks. In: ACM Transactions on Graphics (TOG)
Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research (IJRR), 32(11), 1231–1237.
Godard, C., Mac Aodha, O., & Brostow, G.J. (2017). Unsupervised monocular depth estimation with left-right consistency. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
https://www.photoshopessentials.com/photo-effects/photoshop-weather-effects-rain/.
Hu, X., Fu, C.W., Zhu, L., & Heng, P.A. (2019). Depth-attentional features for single-image rain removal. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Huang, D. A., Kang, L. W., Wang, Y. C. F., & Lin, C. W. (2013). Self-learning based image decomposition with applications to single image denoising. IEEE Transactions on Multimedia (TMM), 16(1), 83–93.
Jeon, D.S., Baek, S.H., Choi, I., & Kim, M.H. (2018). Enhancing the spatial resolution of stereo images using a parallax prior. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., & Wang, Y. (2017). A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
Kang, L. W., Lin, C. W., & Fu, Y. H. (2011). Automatic single-image-based rain streaks removal via image decomposition. IEEE Transactions on Image Processing (TIP), 21(4), 1742–1755.
Kim, J.H., Sim, J.Y., & Kim, C.S. (2014). Stereo video deraining and desnowing based on spatiotemporal frame warping. In The IEEE International Conference on Image Processing (ICIP).
Kim, J. H., Sim, J. Y., & Kim, C. S. (2015). Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Transactions on Image Processing (TIP), 24(9), 2658–2670.
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Li, S., Araujo, I.B., Ren, W., Wang, Z., Tokuda, E.K., Junior, R.H., Cesar-Junior, R., Zhang, J., Guo, X., & Cao, X. (2019). Single image deraining: A comprehensive benchmark analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Li, R., Cheong, L.F., & Tan, R.T. (2019). Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Li, B., Lin, C.W., Shi, B., Huang, T., Gao, W., & Jay Kuo, C.C. (2018). Depth-aware stereo video retargeting. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Li, R., Tan, R.T., & Cheong, L.F. (2020). All in one bad weather removal using architectural search. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3175–3185.
Li, R., Tan, R.T., Cheong, L.F., Aviles-Rivero, A.I., Fan, Q., & Schonlieb, C.B. (2019). Rainflow: Optical flow under rain streaks and rain veiling effect. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 7304–7313.
Li, Y., Tan, R.T., Guo, X., Lu, J., & Brown, M.S. (2016). Rain streak removal using layer priors. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Li, X., Wu, J., Lin, Z., Liu, H., & Zha, H. (2018). Recurrent squeeze-and-excitation context aggregation net for single image deraining. In European conference on computer vision (ECCV).
Li, D., Xu, C., Zhang, K., Yu, X., Zhong, Y., Ren, W., Suominen, H., & Li, H. (2021). Arvo: Learning all-range volumetric correspondence for video deblurring. arXiv:2103.04260.
Liu, F., Shen, C., & Lin, G. (2015). Deep convolutional neural fields for depth estimation from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Liu, J., Yang, W., Yang, S., & Guo, Z. (2018). Erase or fill? deep joint recurrent rain removal and reconstruction in videos. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Liu, P., Xu, J., Liu, J., & Tang, X. (2009). Pixel based temporal analysis using chromatic property for removing rain from videos. Computer and Information Science, 2(1), 53–60.
Liu, J., Yang, W., Yang, S., & Guo, Z. (2018). D3r-net: Dynamic routing residue recurrent network for video rain removal. IEEE Transactions on Image Processing (TIP), 28(2), 699–712.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Luo, W., Schwing, A.G., & Urtasun, R. (2016). Efficient deep learning for stereo matching. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Luo, Y., Xu, Y., & Ji, H. (2015). Removing rain from a single image via discriminative sparse coding. In Proceedings of the IEEE international conference on computer vision (ICCV).
Niu, B., Wen, W., Ren, W., Zhang, X., Yang, L., Wang, S., Zhang, K., Cao, X., & Shen, H. (2020). Single image super-resolution via a holistic attention network. In European conference on computer vision, pp. 191–207. Springer.
Pang, J., Sun, W., Ren, J.S., Yang, C., & Yan, Q. (2017). Cascade residual learning: A two-stage convolutional neural network for stereo matching. In Proceedings of the IEEE international conference on computer vision (ICCV).
Qian, R., Tan, R.T., Yang, W., Su, J., & Liu, J. (2018). Attentive generative adversarial network for raindrop removal from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., & Yang, M.H. (2016). Single image dehazing via multi-scale convolutional neural networks. In European Conference on Computer Vision (ECCV).
Ren, W., Tian, J., Han, Z., Chan, A., & Tang, Y. (2017). Video desnowing and deraining based on matrix decomposition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Riegler, G., Liao, Y., Donne, S., Koltun, V., Geiger, A. (2019). Connecting the dots: Learning representations for active monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Santhaseelan, V., & Asari, V.K. (2015). Utilizing local phase information to remove rain from video. International Journal of Computer Vision (IJCV)
Shao, J., Kang, K., Change Loy, C., & Wang, X. (2015). Deeply learned attributes for crowded scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Shen, Z., Lai, W.S., Xu, T., Kautz, J., & Yang, M.H. (2018). Deep semantic face deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8260–8269.
Shen, Z., Lai, W. S., Xu, T., Kautz, J., & Yang, M. H. (2020). Exploiting semantics for face image deblurring. International Journal of Computer Vision, 128(7), 1829–1846.
Tanaka, Y., Yamashita, A., Kaneko, T., & Miura, K.T. (2006). Removal of adherent waterdrops from images acquired with a stereo camera system. IEICE Transactions on Information and Systems (IEICE TIS).
Tao, A., Sapra, K., & Catanzaro, B. (2020). Hierarchical multi-scale attention for semantic segmentation. arXiv:2005.10821.
Tripathi, A., & Mukhopadhyay, S. (2012). Video post processing: Low-latency spatiotemporal approach for detection and removal of rain. IET Image Processing, 6(2), 181–196.
Wei, W., Yi, L., Xie, Q., Zhao, Q., Meng, D., & Xu, Z. (2017). Should we encode rain streaks in video as deterministic or stochastic? In Proceedings of the IEEE international conference on computer vision (ICCV).
Yang, W., Liu, J., & Feng, J. (2019). Frame-consistent recurrent video deraining with dual-level flow. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., & Yan, S. (2017). Deep joint rain detection and removal from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Yang, W., Tan, R.T., Feng, J., Wang, S., Cheng, B., & Liu, J. (2021). Recurrent multi-frame deraining: Combining physics guidance and adversarial learning. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Yang, W., Tan, R. T., Feng, J., Guo, Z., Yan, S., & Liu, J. (2019). Joint rain detection and removal from a single image with contextualized deep networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(6), 1377–1393.
Yang, W., Tan, R. T., Wang, S., Fang, Y., & Liu, J. (2020). Single image deraining: From model-based to data-driven and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11), 4059–4077.
Yasarla, R., & Patel, V.M. (2019). Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8405–8414.
Yasarla, R., Sindagi, V.A., & Patel, V.M. (2020). Syn2real transfer learning for image deraining using gaussian processes. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2726–2736.
Yasarla, R., & Patel, V. M. (2020). Confidence measure guided single image de-raining. IEEE Transactions on Image Processing, 29, 4544–4555.
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., & Shao, L. (2021). Multi-stage progressive image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14821–14831.
Zhang, H., & Patel, V.M. (2017). Convolutional sparse and low-rank coding-based rain streak removal. In IEEE Winter conference on applications of computer vision (WACV).
Zhang, H., & Patel, V.M. (2018). Densely connected pyramid dehazing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Zhang, H., & Patel, V.M. (2018). Density-aware single image de-raining using a multi-stream dense network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Zhang, J., Fan, D.P., Dai, Y., Anwar, S., Saleh, F.S., Zhang, T., & Barnes, N. (2020). UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8582–8591.
Zhang, K., Li, D., Luo, W., Lin, W.Y., Zhao, F., Ren, W., Liu, W., & Li, H. (2021) Enhanced spatio-temporal interaction learning for video deraining: A faster and better framework. arXiv:2103.12318.
Zhang, K., Li, D., Luo, W., Ren, W., Ma, L., & Li, H. (2021). Dual attention-in-attention model for joint rain streak and raindrop removal. arXiv:2103.07051.
Zhang, K., Li, D., Luo, W., Ren, W., Stenger, B., Liu, W., Li, H., & Yang, M.H. (2021). Benchmarking ultra-high-definition image super-resolution. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 14769–14778.
Zhang, X., Li, H., Qi, Y., Leow, W.K., & Ng, T.K. (2006) Rain removal in video by combining temporal and chromatic properties. In IEEE international conference on multimedia and expo (ICME).
Zhang, K., Li, R., Yu, Y., Luo, W., Li, C., & Li, H. (2021). Deep dense multi-scale network for snow removal using semantic and geometric priors. arXiv:2103.11298 .
Zhang, K., Luo, W., Ma, L., & Li, H. (2019). Cousin network guided sketch recognition via latent attribute warehouse. In Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 9203–9210.
Zhang, K., Luo, W., Ren, W., Wang, J., Zhao, F., Ma, L., & Li, H. (2020). Beyond monocular deraining: Stereo image deraining via semantic understanding. In European Conference on Computer Vision (ECCV).
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by realistic blurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Zhang, K., Ren, W., Luo, W., Lai, W.S., Stenger, B., Yang, M.H., & Li, H. (2022). Deep image deblurring: A survey. arXiv:2201.10700.
Zhang, J., Yu, X., Li, A., Song, P., Liu, B., & Dai, Y. (2020). Weakly-supervised salient object detection via scribble annotations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12546–12555.
Zhang, K., Luo, W., Zhong, Y., Ma, L., Liu, W., & Li, H. (2018). Adversarial spatio-temporal learning for video deblurring. IEEE Transactions on Image Processing (TIP), 28(1), 291–301.
Zhang, H., Sindagi, V., & Patel, V. M. (2019). Image de-raining using a conditional generative adversarial network. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 30(11), 3943–3956.
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017) Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).
Zhao, F., Zhao, J., Yan, S., & Feng, J. (2018). Dynamic conditional networks for few-shot learning. In: Proceedings of the European conference on computer vision (ECCV), pp. 19–35.
Zheng, L., Li, Y., Zhang, K., & Luo, W. (2021). T-net: Deep stacked scale-iteration network for image dehazing. arXiv:2106.02809.
Zheng, Y., Yu, X., Liu, M., & Zhang, S. (2019). Residual multiscale based single image deraining. In British Machine Vision Conference (BMVC).
Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., & Ren, J.S. (2019). Davanet: stereo deblurring with view aggregation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).