Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications
Tài liệu tham khảo
Moghimi, 2005, Nanomedicine: current status and future prospects, FASEB J., 19, 311, 10.1096/fj.04-2747rev
De Jong, 2008, Drug delivery and nanoparticles: applications and hazards, Int. J. Nanomed., 3, 133, 10.2147/IJN.S596
Fischer, 2007, Nanotoxicity: the growing need for in vivo study, Curr. Opin. Biotechnol., 18, 565, 10.1016/j.copbio.2007.11.008
McCarthy, 2008, Multifunctional magnetic nanoparticles for targeted imaging and therapy, Adv. Drug Deliv. Rev., 60, 1241, 10.1016/j.addr.2008.03.014
Juzenas, 2008, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv. Drug Deliv. Rev., 60, 1600, 10.1016/j.addr.2008.08.004
Bhattacharya, 2008, Biological properties of “naked” metal nanoparticles, Adv. Drug Deliv. Rev., 60, 1289, 10.1016/j.addr.2008.03.013
Warheit, 2008, Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks, Pharmacol. Ther., 120, 35, 10.1016/j.pharmthera.2008.07.001
Vallet-Regí, 2007, Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. Engl., 46, 7548, 10.1002/anie.200604488
Sclafani, 1996, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, J. Phys. Chem., 100, 13655, 10.1021/jp9533584
Rampaul, 2003, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron, 22, 35, 10.1016/S0277-5387(02)01333-5
Donaldson, 2006, Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety, Toxicol. Sci., 92, 5, 10.1093/toxsci/kfj130
Shvedova, 2003, Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, J. Toxicol. Environ. Health, 66, 1909, 10.1080/713853956
Kagan, 2006, Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron, Toxicol. Lett., 165, 88, 10.1016/j.toxlet.2006.02.001
Pulskamp, 2007, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol. Lett., 168, 58, 10.1016/j.toxlet.2006.11.001
Brinker, 1990
Lee, 2006, Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions, Chem. Phys., 328, 229, 10.1016/j.chemphys.2006.06.032
Marchisio, 2006, Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J., 52, 1877, 10.1002/aic.10786
Andersson, 2004, Structural features and adsorption behaviour of mesoporous silica particles formed from droplets generated in a spraying chamber, Microporous Mesoporous Mater., 72, 175, 10.1016/j.micromeso.2004.04.019
Chang, 2007, In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line, Environ. Sci. Technol., 41, 2064, 10.1021/es062347t
Vasiliev, 2008, Colloidal aspects relating to direct incorporation of TiO2 nanoparticles into mesoporous spheres by an aerosol-assisted process, J. Colloid Interface Sci., 319, 144, 10.1016/j.jcis.2007.11.013
Trommelen, 2004, Evaporation and drying of drops in superheated vapors, AIChE J., 16, 857, 10.1002/aic.690160527
Masters, 1972
Zachariah, 1990, Multiphoton ionization spectroscopy measurements of silicon atoms during vapor phase of ceramic particles, J. Appl. Phys., 68, 311, 10.1063/1.347134
Kishida, 1995, Novel preparation of metal-supported catalysts by colloidal microparticles in a water-in-oil microemulsion; catalytic hydrogenation of carbon dioxide, Chem. Commun., 763, 10.1039/c39950000763
Pileni, 1998
Vestal, 2002, Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties, Chem. Mater., 14, 3817, 10.1021/cm020112k
Jana, 2001, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B, 105, 4065, 10.1021/jp0107964
Rodrıguez-Fernandez, 2005, Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes, J. Phys. Chem., B, 109, 14257, 10.1021/jp052516g
Shimizu, 2003, Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state, J. Phys. Chem., B, 107, 2719, 10.1021/jp026920g
Connor, 2005, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1, 325, 10.1002/smll.200400093
Takahashi, 2006, Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity, Langmuir, 22, 2, 10.1021/la0520029
Leonov, 2008, Detoxification of gold nanorods by treatment with polystyrenesulfonate, ACS Nano, 2, 2481, 10.1021/nn800466c
Warheit, 2008, How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization?, Toxicol. Sci., 101, 183, 10.1093/toxsci/kfm279
Yamamuro, 2002, Direct imaging of self-assembled magnetic nanoparticle arrays: phase stability and magnetic effects on morphology, Phys. Rev., B, 65, 224431, 10.1103/PhysRevB.65.224431
Ahniyaz, 2007, Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes, Proc. Natl. Acad. Sci. U. S. A., 104, 17570, 10.1073/pnas.0704210104
Chen, 2005, Shape controlled growth of gold nanoparticles by a solution synthesis, Chem. Commun., 33, 4181, 10.1039/b504911c
Yaghi, 2003, Reticular synthesis and the design of new materials, Nature, 423, 705, 10.1038/nature01650
Thomas, 1967
Lindfors, 2004, Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy, Phys. Rev. Lett., 93, 1037401, 10.1103/PhysRevLett.93.037401
Kang, 2006, Sintering behavior of spin-coated FePt and FePtAu nanoparticles, J. Appl. Phys., 99, 08N704, 10.1063/1.2165789
Pecora, 2000, Dynamic light scattering measurement of nanometer particles in liquids, J. Nanopart. Res., 2, 123, 10.1023/A:1010067107182
Conner, 2003, Regulated portals of entry into the cell, Nature, 422, 37, 10.1038/nature01451
Jones, 1996, Injectable gold compounds: an overview, Br. J. Rheumatol., 35, 1154, 10.1093/rheumatology/35.11.1154
Shukla, 2005, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir, 21, 10644, 10.1021/la0513712
Tsai, 2007, Amelioration of collagen-induced arthritis in rats by nanogold, Arthritis Rheum., 56, 544, 10.1002/art.22401
Mukherjee, 2005, Antiangiogenic properties of gold nanoparticles, Clin. Cancer Res., 11, 3530, 10.1158/1078-0432.CCR-04-2482
Farokhzad, 2004, Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells, Cancer Res., 64, 7668, 10.1158/0008-5472.CAN-04-2550
Hirsch, 2006, Metal nanoshells, Ann. Biomed. Eng., 34, 15, 10.1007/s10439-005-9001-8
Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U.S.A., 100, 13549, 10.1073/pnas.2232479100
Su, 2007, Nanoshell magnetic resonance imaging contrast agents, J. Am. Chem. Soc., 129, 2139, 10.1021/ja0672066
Shimizu, 2003, Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state, J. Phys. Chem., B, 107, 2719, 10.1021/jp026920g
Hu, 2006, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h
Loo, 2005, Gold nanoshell bioconjugates for molecular imaging in living cells, Opt. Lett., 30, 1012, 10.1364/OL.30.001012
Earle, 1942, The electrical conductivity of titanium dioxide, Phys. Rev., 61, 56, 10.1103/PhysRev.61.56
Hagfeldt, 1995, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95, 49, 10.1021/cr00033a003
Sayes, 2006, Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells, Toxicol. Sci., 92, 174, 10.1093/toxsci/kfj197
Mo, 1995, Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite, Phys. Rev., B, 51, 13023, 10.1103/PhysRevB.51.13023
Contado, 2008, TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis, Anal. Chem., 80, 7594, 10.1021/ac8012626
Driscoll, 1997, Amplifying and scattering media for photodynamic therapy, Lasers Electro-Optics, 11, 153
Bermudez, 2004, Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles, Toxicol. Sci., 77, 347, 10.1093/toxsci/kfh019
Chen, 2006, Titanium dioxide nanoparticles induce emphysema-like lung injury in mice, FASEB J., 20, 2393, 10.1096/fj.06-6485fje
Toru, 2004, Application of apatite coated titanium dioxide, Photocatal. Ceram. Jpn., 39, 534
Guo, 2008, Fabrication and in vitro characterization of magnetic hydroxycarbonate apatite coatings with hierarchically porous structures, Acta Biomater., 4, 923, 10.1016/j.actbio.2008.02.014
Salata, 2004, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol., 2, 3, 10.1186/1477-3155-2-3
Kresge, 1992, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 710, 10.1038/359710a0
Wang, 2007, On the controllable soft-templating approach to mesoporous silicates, Chem. Rev., 107, 2821, 10.1021/cr068020s
Zhao, 1998, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024, 10.1021/ja974025i
Che, 2003, A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure, Nature Mat., 2, 801, 10.1038/nmat1022
Garcia-Bennett, 2007, Particle-size control and surface structure of the cubic mesocaged material AMS-8, Angew. Chem. Int. Ed., 45, 2434, 10.1002/anie.200503253
Ramila, 2002, a new hydroxyapatite/glass biphasic material: in vitro bioactivity, Chem. Mater., 14, 2439, 10.1021/cm011165p
Balas, 2006, Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials, J. Am. Chem. Soc., 128, 8116, 10.1021/ja062286z
Mellaerts, 2008, Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica, Eur. J. Pharm. Biopharm., 69, 223, 10.1016/j.ejpb.2007.11.006
Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397
Warheit, 1990, Four-week inhalation toxicity study with Ludox colloidal silica in rats: pulmonary cellular responses, Toxicol. Sci., 16, 590, 10.1093/toxsci/16.3.590
Radu, 2004, A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent, J. Am. Chem. Soc., 126, 13216, 10.1021/ja046275m
Slowing, 2007, Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins, J. Am. Chem. Soc., 129, 8845, 10.1021/ja0719780
Vallhov, 2007, Mesoporous silica particles induce size dependent effects on human dendritic cells, Nano Lett., 12, 3576, 10.1021/nl0714785
Hudson, 2008, The biocompatibility of mesoporous silicates, Biomaterials, 29, 4045, 10.1016/j.biomaterials.2008.07.007
Nel, 2005, Air pollution-related illness: effects of particles, Science, 308, 804, 10.1126/science.1108752
Gwinn, 2006, Nanoparticles: health effects—pros and cons, Environ. Health Perspect., 114, 1818, 10.1289/ehp.8871
Fadeel, 2007, There's plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials, Nanotoxicology, 1, 73, 10.1080/17435390701565578
Borm, 2006, The potential risks of nanomaterials: a review carried out for ECETOC, Part. Fibre Toxicol., 3, 11, 10.1186/1743-8977-3-11
Oberdörster, 2007, Toxicology of nanoparticles: a historical perspective, Nanotoxicology, 1, 2, 10.1080/17435390701314761
Lewinski, 2008, Cytotoxicity of nanoparticles, Small, 4, 26, 10.1002/smll.200700595
N.A. Monteiro-Riviere, A.O. Inman, L.W. Zhang, Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line, Toxicol. Appl. Pharmacol. 234 (2009) 222–235.
Laaksonen, 2007, Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles, Chem. Res. Toxicol., 20, 1913, 10.1021/tx700326b
Sayes, 2007, Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles, Toxicol. Sci., 97, 163, 10.1093/toxsci/kfm018
Lee, 2007, Biodistribution of quantum dot nanoparticles in perfused skin: evidence of coating dependency and periodicity in arterial extraction, Nano Lett., 7, 2865, 10.1021/nl071563c
Ding, 2005, Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast, Nano Lett., 5, 2448, 10.1021/nl051748o
Zhang, 2006, Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements, Nano Lett., 6, 800, 10.1021/nl0603350
Hirano, 2008, Multi-walled carbon nanotubes injure the plasma membrane of macrophages, Toxicol. Appl. Pharmacol., 232, 244, 10.1016/j.taap.2008.06.016
Cha, 2008, Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles, Biotechnol. Lett., 30, 1893, 10.1007/s10529-008-9786-2
K.M. Waters, L.M. Masiello, R.C. Zangar, B.J. Tarasevich, N.J. Karin, R.D. Quesenberry, S. Bandyopadhyay, J.G. Teeguarden, J.G. Pounds, B.D. Thrall, Macrophage responses to silica nanoparticles are highly conserved across particle sizes, Toxicol. Sci. 107 (2009) 553–569.
Sheehan, 2007, The potential of proteomics for providing new insights into environmental impacts on human health, Rev. Environ. Health, 22, 175, 10.1515/REVEH.2007.22.3.175
Moss, 2006, When nanoparticles get in the way: impact of projected area on in vivo and in vitro macrophage function, Inhal. Toxicol., 18, 711, 10.1080/08958370600747770
Wittmaack, 2007, In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?, Environ. Health Perspect., 115, 187, 10.1289/ehp.9254
Oberdörster, 2007, Concepts of nanoparticle dose metric and response metric, Environ. Health Perspect., 115, A290, 10.1289/ehp.115-a290a
Powers, 2006, Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation, Toxicol. Sci., 90, 296, 10.1093/toxsci/kfj099
Oberdörster, 1994, Correlation between particle size, in vivo particle persistence, and lung injury, Environ. Health Perspect., 102, 173, 10.2307/3432080
Monteiller, 2007, The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area, Occup. Environ. Med., 64, 609, 10.1136/oem.2005.024802
Teeguarden, 2007, Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments, Toxicol. Sci., 95, 300, 10.1093/toxsci/kfl165
Lison, 2008, Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays, Toxicol. Sci., 104, 155, 10.1093/toxsci/kfn072
Grassian, 2007, Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5nm, Environ. Health Perspect., 115, 397, 10.1289/ehp.9469
Warheit, 2007, Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties, Toxicology, 230, 90, 10.1016/j.tox.2006.11.002
Warheit, 2006, Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area, Toxicol. Sci., 91, 227, 10.1093/toxsci/kfj140
Warheit, 2007, Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics, Toxicol. Sci., 95, 270, 10.1093/toxsci/kfl128
Shaw, 2008, Perturbational profiling of nanomaterial biologic activity, Proc. Natl. Acad. Sci. U. S. A., 105, 7387, 10.1073/pnas.0802878105
Esther, 2005, Gold nanoparticles do not affect the global transcriptional program of human umbilical vein endothelial cells: a DNA microarray analysis, J. Biomed. Nanotech., 3, 328, 10.1166/jbn.2005.043
Pernodet, 2006, Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts, Small, 2, 766, 10.1002/smll.200500492
Goodman, 2004, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem., 15, 897, 10.1021/bc049951i
Jahnen-Dechent, 2008, Function follows form: shape complementarity and nanoparticle toxicity, Nanomed., 3, 601, 10.2217/17435889.3.5.601
Schmid, 2008, The relevance of shape and size of Au55 clusters, Chem. Soc. Rev., 37, 1909, 10.1039/b713631p
Tsoli, 2005, Cellular uptake and toxicity of Au55 clusters, Small, 1, 841, 10.1002/smll.200500104
Pan, 2007, Size-dependent cytotoxicity of gold nanoparticles, Small, 3, 1941, 10.1002/smll.200700378
Jiang, 2008, Nanoparticle-mediated cellular response is size-dependent, Nat. Nanotechnol., 3, 145, 10.1038/nnano.2008.30
Dutta, 2007, Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials, Toxicol. Sci., 100, 303, 10.1093/toxsci/kfm217
Cedervall, 2007, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci. U. S. A., 104, 2050, 10.1073/pnas.0608582104
Lundqvist, 2008, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc. Natl. Acad. Sci. U. S. A., 105, 14265, 10.1073/pnas.0805135105
Ehrenberg, 2009, The influence of protein adsorption on nanoparticle association with cultured endothelial cells, Biomaterials, 30, 603, 10.1016/j.biomaterials.2008.09.050
Vallhov, 2006, The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications, Nano Lett., 6, 1682, 10.1021/nl060860z
Monn, 1999, Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10–2.5) in outdoor and indoor air, Toxicol. Appl. Pharmacol., 155, 245, 10.1006/taap.1998.8591
Xia, 2006, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6, 1794, 10.1021/nl061025k
Xia, 2008, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2, 2121, 10.1021/nn800511k
Yang, 2009, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition, J. Appl. Toxicol., 29, 69, 10.1002/jat.1385
Díaz, 2008, Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates, Small, 4, 2025, 10.1002/smll.200800199
Chang, 2006, Evaluation of quantum dot cytotoxicity based on intracellular uptake, Small, 2, 1412, 10.1002/smll.200600218
Xia, 2008, Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways, ACS Nano, 2, 85, 10.1021/nn700256c
N.H. Alsharif, C.E. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks, H.K. Datta, Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis, Small 5 (2009) 221–228.
Sadauskas, 2007, Kupffer cells are central in the removal of nanoparticles from the organism, Part. Fibre Toxicol., 4, 10, 10.1186/1743-8977-4-10
Geiser, 2008, The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles, Am. J. Respir. Cell Mol. Biol., 38, 371, 10.1165/rcmb.2007-0138OC
Manolova, 2008, Nanoparticles target distinct dendritic cell populations according to their size, Eur. J. Immunol., 38, 1404, 10.1002/eji.200737984
Dobrovolskaia, 2007, Immunological properties of engineered nanomaterials, Nat. Nanotechnol., 2, 469, 10.1038/nnano.2007.223
Huff, 2007, Controlling the cellular uptake of gold nanorods, Langmuir, 23, 1596, 10.1021/la062642r
Geiser, 2005, Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environ. Health Perspect., 113, 1555, 10.1289/ehp.8006
Nagayama, 2007, Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor, Int. J. Pharm., 329, 192, 10.1016/j.ijpharm.2006.08.025
Xing, 2005, Uptake of silica-coated nanoparticles by HeLa cells, J. Nanosci. Nanotechnol., 5, 1688, 10.1166/jnn.2005.199
Ferrari, 2008, Nanogeometry: beyond drug delivery, Nat. Nanotechnol., 3, 131, 10.1038/nnano.2008.46
Vonarbourg, 2006, Parameters influencing the stealthiness of colloidal drug delivery systems, Biomaterials, 27, 4356, 10.1016/j.biomaterials.2006.03.039
Champion, 2006, Role of target geometry in phagocytosis, Proc. Natl. Acad. Sci. U. S. A., 103, 4930, 10.1073/pnas.0600997103
Gratton, 2008, The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. U. S. A., 105, 11613, 10.1073/pnas.0801763105
Chithrani, 2007, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano Lett., 7, 1542, 10.1021/nl070363y
Maynard, 2006, Safe handling of nanotechnology, Nature, 444, 267, 10.1038/444267a
Oberdörster, 2004, Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol., 16, 437, 10.1080/08958370490439597
Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). (2007). Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. European Commission Health & Consumer Protection Directorate-General.
Oberdörster, 2005, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823, 10.1289/ehp.7339