Bethe-Sommerfeld conjecture for periodic operators with strong perturbations

Leonid Parnovski1, A. V. Sobolev1
1Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barbatis, G., Parnovski, L.: Bethe-Sommerfeld conjecture for pseudo-differential perturbation. Commun. Partial Differ. Equ. 34(4), 383–418 (2009)

Birman, M.Ş., Solomyak, M.Z.: Spectral Theory of Self-adjoint Operators in Hilbert Space. Reidel, Dordrecht (1987)

Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin (1959)

Dahlberg, B.E.J., Trubowitz, E.: A remark on two dimensional periodic potentials. Comment. Math. Helv. 57, 130–134 (1982)

Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic, Edinburgh (1973)

Feldman, J., Knörrer, H., Trubowitz, E.: The perturbatively stable spectrum of a periodic Schrödinger operator. Invent. Math. 100, 259–300 (1990)

Feldman, J., Knörrer, H., Trubowitz, E.: Perturbatively unstable eigenvalues of a periodic Schrödinger operator. Comment. Math. Helv. 66, 557–579 (1991)

Helffer, B., Mohamed, A.: Asymptotics of the density of states for the Schrödinger operator with periodic electric potential. Duke Math. J. 92, 1–60 (1998)

Karpeshina, Y.E.: Perturbation series for the Schrödinger operator with a periodic potential near planes of diffraction. Commun. Anal. Geom. 4(3), 339–413 (1996)

Karpeshina, Y.E.: Perturbation Theory for the Schrödinger Operator with a Periodic Potential. Lecture Notes in Math., vol. 1663. Springer, Berlin (1997)

Karpeshina, Y.E.: Spectral properties of periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case. Commun. Math. Phys. 251(3), 473–514 (2004)

Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993)

Mohamed, A.: Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential. J. Math. Phys. 38(8), 4023–4051 (1997)

Parnovski, L.: Bethe-Sommerfeld conjecture. Ann. Henri Poincaré 9(3), 457–508 (2008)

Parnovski, L., Sobolev, A.V.: Bethe-Sommerfeld conjecture for polyharmonic operators. Duke Math. J. 107(2), 209–238 (2001)

Parnovski, L., Sobolev, A.V.: Perturbation theory and the Bethe-Sommerfeld conjecture. Ann. Henri Poincaré 2, 573–581 (2001)

Popov, V.N., Skriganov, M.: A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential. Zap. Nauchn. Semin. LOMI AN SSSR 109, 131–133 (1981) (Russian)

Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Academic Press, New York (1975)

Rozenbljum, G.V.: Near-similarity of operators and the spectral asymptotic behavior of pseudodifferential operators on the circle. Tr. Mosk. Mat. Obshch. 36, 59–84 (1978) (Russian)

Skriganov, M.: Proof of the Bethe-Sommerfeld conjecture in dimension two. Sov. Math. Dokl. 20(1), 89–90 (1979)

Skriganov, M.: Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators. Proc. Steklov Math. Inst. 171 (1984)

Skriganov, M.: The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential. Invent. Math. 80, 107–121 (1985)

Skriganov, M., Sobolev, A.: Asymptotic estimates for spectral bands of periodic Schrödinger operators. St. Petersburg Math. J. 17(1), 207–216 (2006)

Sobolev, A.V.: Integrated density of states for the periodic Schrödinger operator in dimension two. Ann. Henri Poincaré 6, 31–84 (2005)

Sobolev, A.V.: Asymptotics of the integrated density of states for periodic elliptic pseudo-differential operators in dimension one. Rev. Mat. Iberoam. 22(1), 55–92 (2006)

Sobolev, A.V.: Recent results on the Bethe-Sommerfeld conjecture. In: Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday. Proc. Sympos. Pure Math., Part 1, vol. 76, pp. ix–xii. Am. Math. Soc., Providence (2007)

Sommerfeld, A., Bethe, H.: Elektronentheorie der Metalle. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, Part 2, vol. 24, pp. 333–622. Springer, Berlin (1933). Later edition: Elektronentheorie der Metalle. Springer (1967)

Veliev, O.A.: Asymptotic formulas for the eigenvalues of the periodic Schrödinger operator and the Bethe-Sommerfeld conjecture. Funct. Anal. Appl. 21(2), 87–100 (1987)

Veliev, O.A.: On the spectrum of multidimensional periodic operators. Theory Funct. Funct. Anal. Appl. Kharkov Univ. 49, 17–34 (1988) (in Russian)

Veliev, O.A.: Perturbation theory for the periodic multidimensional Schrödinger operator and the Bethe-Sommerfeld conjecture. Int. J. Contemp. Math. Sci. 2(2), 19–87 (2007)