Bespoke photonic devices using ultrafast laser driven ion migration in glasses

Progress in Materials Science - Tập 94 - Trang 68-113 - 2018
T.T. Fernandez1, M. Sakakura2, S.M. Eaton1, B. Sotillo1, J. Siegel3, J. Solis3, Y. Shimotsuma4, K. Miura4
1Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, Italy
2Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom
3Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Científicas (IO,CSIC), Madrid, Spain
4Department of Materials Chemistry, Kyoto University, Kyoto, Japan

Tài liệu tham khảo

Valle, 2009, Micromachining of photonic devices by femtosecond laser pulses, J Opt A: Pure Appl Opt, 11, 013001, 10.1088/1464-4258/11/1/013001 Sotillo, 2016, Diamond photonics platform enabled by femtosecond laser writing, Sci Rep, 6, 35566, 10.1038/srep35566 Davis, 1996, Writing waveguides in glass with a femtosecond laser, Opt Lett, 21, 1729, 10.1364/OL.21.001729 Eaton, 2005, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Opt Express, 13, 4708, 10.1364/OPEX.13.004708 Eaton, 2008, Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides, Opt Express, 16, 9443, 10.1364/OE.16.009443 Schaffer, 2003, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser, Appl Phys A, 76, 351, 10.1007/s00339-002-1819-4 Zimmermann, 2016, Ultrashort pulse laser processing of silica at high repetition rates—from network change to residual strain, Int J Appl Glass Sci, 8, 233, 10.1111/ijag.12221 Chan, 2001, Structural changes in fused silica after exposure to focused femtosecond laser pulses, Opt Lett, 26, 1726, 10.1364/OL.26.001726 Courrol, 2004, Color center production by femtosecond pulse laser irradiation in LiF crystals, Opt Express, 12, 288, 10.1364/OPEX.12.000288 Shimotsuma, 2003, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys Rev Lett, 91, 247405, 10.1103/PhysRevLett.91.247405 Miura, 2000, Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses, Opt Lett, 25, 408, 10.1364/OL.25.000408 Wang, 2010, Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity, J Opt Soc Am B, 27, 370, 10.1364/JOSAB.27.000370 Zhang, 2008, Three-dimensional optical sensing network written in fused silica glass with femtosecond laser, Opt Express, 16, 14015, 10.1364/OE.16.014015 Taccheo, 2004, Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses, Opt Lett, 29, 2626, 10.1364/OL.29.002626 Thomson, 2009, Ultrafast laser inscription: an enabling technology for astrophotonics, Opt Express, 17, 1963, 10.1364/OE.17.001963 Arriola, 2017, Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials, Opt Mater Express, 7, 698, 10.1364/OME.7.000698 Marshall, 2009, Laser written waveguide photonic quantum circuits, Opt Express, 17, 12546, 10.1364/OE.17.012546 Schaffer, 2001, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas Sci Technol, 12, 1784, 10.1088/0957-0233/12/11/305 Schaffer, 2001, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt Lett, 26, 93, 10.1364/OL.26.000093 Killi, 2005, High-peak-power pulses from a cavity-dumped Yb: KY (WO 4) 2 oscillator, Opt Lett, 30, 1891, 10.1364/OL.30.001891 Shah, 2007, High-power ultrashort-pulse fiber amplifiers, IEEE J Sel Top Quantum Electron, 13, 552, 10.1109/JSTQE.2007.896096 Stuart, 1996, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Phys Rev B, 53, 1749, 10.1103/PhysRevB.53.1749 Gattass, 2008, Femtosecond laser micromachining in transparent materials, Nat Photon, 2, 219, 10.1038/nphoton.2008.47 Schaffer, 2001, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas Sci Technol, 12, 1784, 10.1088/0957-0233/12/11/305 Du, 1994, Laser-induced breakdown by impact ionization in fused silica with pulse widths from 7 ns to 150 fs, Appl Phys Lett, 64, 3071, 10.1063/1.111350 Miura, 1997, Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl Phys Lett, 71, 3329, 10.1063/1.120327 Richter, 2012, On the fundamental structure of femtosecond laser-induced nanogratings, Laser Photonics Rev, 6, 787, 10.1002/lpor.201200048 Sudrie, 1999, Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses, Opt Commun, 171, 279, 10.1016/S0030-4018(99)00562-3 Shimotsuma, 2003, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys Rev Lett, 91, 247405, 10.1103/PhysRevLett.91.247405 Bhardwaj, 2006, Optically produced arrays of planar nanostructures inside fused silica, Phys Rev Lett, 96, 10.1103/PhysRevLett.96.057404 Glezer, 1997, Ultrafast-laser driven micro-explosions in transparent materials, Appl Phys Lett, 71, 882, 10.1063/1.119677 Itoh, 2006, Ultrafast processes for bulk modification of transparent materials, MRS Bull, 31, 620, 10.1557/mrs2006.159 Chan, 2001, Structural changes in fused silica after exposure to focused femtosecond laser pulses, Opt Lett, 26, 1726, 10.1364/OL.26.001726 Bruckner, 1970, Properties and structure of vitreous silica. I, J Non-Cryst Solids, 5, 123, 10.1016/0022-3093(70)90190-0 Sakakura, 2008, Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses, Appl Phys Lett, 93, 3, 10.1063/1.3046101 Hirao, 1998, Writing waveguides and gratings in silica and related materials by a femtosecond laser, J Non-Cryst Solids, 239, 91, 10.1016/S0022-3093(98)00755-8 Saliminia, 2005, Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 microns, Opt Commun, 256, 422, 10.1016/j.optcom.2005.06.071 Streltsov, 2002, Study of femtosecond-laser-written waveguides in glasses, J Opt Soc Am B, 19, 2496, 10.1364/JOSAB.19.002496 Dekker, 2010, Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres, Opt Express, 18, 3274, 10.1364/OE.18.003274 Kanehira, 2008, Ion exchange in glass using femtosecond laser irradiation, Appl Phys Lett, 93, 3, 10.1063/1.2959820 Toney Fernandez, 2013, Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass, Opt Lett, 38, 5248, 10.1364/OL.38.005248 Richter, 2013, Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE™, Opt Mater Express, 3, 1161, 10.1364/OME.3.001161 Taylor, 2008, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass, Laser Photonics Rev, 2, 26, 10.1002/lpor.200710031 Ramirez, 2010, Tuning the structural properties of femtosecond-laser-induced nanogratings, Appl Phys A, 100, 1, 10.1007/s00339-010-5684-2 Hnatovsky, 2006, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching, Appl Phys A, 84, 47, 10.1007/s00339-006-3590-4 Tamaki, 2006, Structural modification in fused silica by a femtosecond fiber laser at 1558 nm, Opt Express, 14, 6971, 10.1364/OE.14.006971 Fernandes, 2011, Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits, Opt Express, 19, 18294, 10.1364/OE.19.018294 Corrielli, 2014, Integrated optical waveplates for arbitrary operations on polarization-encoded single-qubits, Nat Commun, 5, 4249, 10.1038/ncomms5249 Juodkazis, 2006, Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures, Phys Rev Lett, 96, 166101, 10.1103/PhysRevLett.96.166101 Glezer, 1996, Three-dimensional optical storage inside transparent materials, Opt Lett, 21, 2023, 10.1364/OL.21.002023 Juodkazis, 2002, Application of femtosecond laser pulses for microfabrication of transparent media, Appl Surf Sci, 197–198, 705, 10.1016/S0169-4332(02)00397-5 Hnatovsky, 2005, High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations, J Appl Phys, 98, 013517, 10.1063/1.1944223 Mao, 2004, Dynamics of femtosecond laser interactions with dielectrics, Appl Phys A, 79, 1695, 10.1007/s00339-004-2684-0 Johnston, 1998, Beam propagation (M2) measurement made as easy as it gets: the four-cuts method, Appl Opt, 37, 4840, 10.1364/AO.37.004840 Eaton, 2008, Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides, Opt Express, 16, 9443, 10.1364/OE.16.009443 Osellame, 2006, Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator, IEEE J Sel Top Quantum Electron, 12, 277, 10.1109/JSTQE.2006.872731 Osellame, 2005, Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator, Opt Express, 13, 612, 10.1364/OPEX.13.000612 Sudrie, 2002, Femtosecond laser-induced damage and filamentary propagation in fused silica, Phys Rev Lett, 89, 10.1103/PhysRevLett.89.186601 Siegel, 2005, Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold, Appl Phys Lett, 86, 10.1063/1.1888032 Ta'eed, 2007, Ultrafast all-optical chalcogenide glass photonic circuits, Opt Express, 15, 9205, 10.1364/OE.15.009205 Burghoff, 2007, Origins of waveguiding in femtosecond laser-structured LiNbO3, Appl Phys A, 89, 127, 10.1007/s00339-007-4152-0 Torchia, 2008, Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides, Appl Phys Lett, 92, 111103, 10.1063/1.2890073 Eaton, 2012, Femtosecond laser microstructuring for polymeric lab-on-chips, J Biophotonics, 5, 687, 10.1002/jbio.201200048 Pätzold, 2016, Cascaded-focus laser writing of low-loss waveguides in polymers, Opt Lett, 41, 1269, 10.1364/OL.41.001269 Efimov, 2001, Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses, Opt Mater, 17, 379, 10.1016/S0925-3467(01)00062-3 Streltsov, 2002, Study of femtosecond-laser-written waveguides in glasses, J Opt Soc Am B, 19, 2496, 10.1364/JOSAB.19.002496 Chan, 2003, Waveguide fabrication in phosphate glasses using femtosecond laser pulses, Appl Phys Lett, 82, 2371, 10.1063/1.1565708 Zoubir, 2004, Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate), Opt Lett, 29, 1840, 10.1364/OL.29.001840 Bhardwaj, 2005, Femtosecond laser-induced refractive index modification in multicomponent glasses, J Appl Phys, 97, 083102, 10.1063/1.1876578 Hughes, 2007, Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass, Appl Phys Lett, 90, 131113, 10.1063/1.2718486 Psaila, 2008, Er&Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription, IEEE Photonics Technol Lett, 20, 126, 10.1109/LPT.2007.912538 Fernandez, 2010, Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass, Opt Express, 18, 20289, 10.1364/OE.18.020289 Ponader, 2008, Origin of the refractive-index increase in laser-written waveguides in glasses, J Appl Phys, 103, 063516, 10.1063/1.2888561 Osellame R, Cerullo G, Ramponi R. Femtosecond laser micromachining. Topics in applied physics, vol. 123. Springer: Berlin Heidelberg; 2012. Thomson, 2006, Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime, Appl Phys Lett, 88, 111109, 10.1063/1.2186389 Okhrimchuk, 2012, Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses, Opt Express, 20, 3832, 10.1364/OE.20.003832 Apostolopoulos, 2004, Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+: sapphire, Appl Phys Lett, 85, 1122, 10.1063/1.1781737 Eaton, 2008, Raman gain from waveguides inscribed in KGd (WO₄)2 by high repetition rate femtosecond laser, Appl Phys Lett, 92, 081105, 10.1063/1.2884188 http://www.delta-technologies.com/downloads/Eagle%202000.pdf. Zhang, 2017, Abnormal elemental redistribution in silicate glasses irradiated by ultrafast laser, J Alloys Compd, 727, 444, 10.1016/j.jallcom.2017.08.090 Cheng, 2014, Precipitation of bismuth nanoparticles and elements distribution in bismuth germanate glass induced by femtosecond laser, Mater Lett, 128, 204, 10.1016/j.matlet.2014.04.120 Fan, 2015, Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation, J Mater Chem C, 3, 6725, 10.1039/C5TC00338E Zhang, 2016, Evolution of polarization dependent microstructures induced by high repetition rate femtosecond laser irradiation in glass, Opt Express, 24, 21353, 10.1364/OE.24.021353 Luo, 2011, Elemental redistribution in glass induced by a 250-kHz femtosecond laser, J Non-Cryst Solids, 357, 2384, 10.1016/j.jnoncrysol.2010.11.094 http://www.schott.com/d/advanced_optics/befd9ed0-4450-40df-9208-bf07b00334cf/1.2/schott-foturan-ii-english-09052017.pdf. http://www.matsunami-glass.co.jp/english/life/clinical_g/data07.html. http://www.kigre.com/files/qxdata.pdf & http://www.kigre.com/files/mm2data.pdf. http://www.schott.com/advanced_optics/english/download/schott-iog-1-phosphate-laser-glass-may-2013-eng.pdf. Goldstein, 2003 Pennycook, 2002, Structure determination through Z-contrast microscopy, 173, 10.1016/S1076-5670(02)80063-5 Gorelik, 2003, Transmission electron microscopy studies of femtosecond laser induced modifications in quartz, Appl Phys A, 76, 309, 10.1007/s00339-002-1813-x Juodkazis, 2011, Structural characterization of femtosecond laser modified regions inside sapphire, J Nanosci Nanotechnol, 11, 2931, 10.1166/jnn.2011.3919 Cao, 2017, Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure, J Opt Soc Am B, 34, 160, 10.1364/JOSAB.34.000160 Cao, 2017, Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation, J Am Ceram Soc, 100, 115, 10.1111/jace.14570 Chris, 2001, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas Sci Technol, 12, 1784, 10.1088/0957-0233/12/11/305 Fernandez, 2014, Role of ion migrations in ultrafast laser written tellurite glass waveguides, Opt Express, 22, 15298, 10.1364/OE.22.015298 Fernandez, 2015, Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides, IEEE Photonics Technol Lett, 27, 1068, 10.1109/LPT.2015.2407378 Kanehira, 2008, Ion exchange in glass using femtosecond laser irradiation, Appl Phys Lett, 93, 023112, 10.1063/1.2959820 Liu, 2009, Micromodification of element distribution in glass using femtosecond laser irradiation, Opt Lett, 34, 136, 10.1364/OL.34.000136 Fernandez, 2015, Controlling plasma distributions as driving forces for ion migration during fs laser writing, J Phys D: Appl Phys, 48, 155101, 10.1088/0022-3727/48/15/155101 Yonesaki, 2005, Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser, J Non-Cryst Solids, 351, 885, 10.1016/j.jnoncrysol.2005.01.076 Luo, 2010, Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser, Opt Express, 18, 6262, 10.1364/OE.18.006262 Luo, 2011, Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective’s immersion liquid, Opt Lett, 36, 2125, 10.1364/OL.36.002125 Wang, 2011, Modification of long range order in germanate glass by ultra fast laser, Chem Phys Lett, 511, 266, 10.1016/j.cplett.2011.06.063 Sakakura, 2013, Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots, Opt Lett, 38, 4939, 10.1364/OL.38.004939 Sakakura, 2014, Condensation of Si-rich region inside soda-lime glass by parallel femtosecond laser irradiation, Opt Express, 22, 16493, 10.1364/OE.22.016493 Zhang, 2014, Femtosecond laser induced migration of alkali ions in calcium silicate glasses, Mater Lett, 137, 92, 10.1016/j.matlet.2014.08.042 Sakakura M et al. Modification of flow of glass melt and elemental distributions by parallel irradiation with femtosecond laser pulses. In: SPIE Proceedings on Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX; 2015. Sakakura, 2007, Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse, Opt Express, 15, 16800, 10.1364/OE.15.016800 Li J et al. 5-D spectroscopic microscopy for intelligent femtosecond laser writing of optical waveguides. In: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies. San Jose, Californi: Optical Society of America; 2008. Sakakura, 2010, Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method, Laser Chem, 2010, 148268, 10.1155/2010/148268 Tomoki, 2012, In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass, Jpn J Appl Phys, 51, 102403, 10.7567/JJAP.51.102403 Yoshino T et al. Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement. In: Schoenfeld WV, Rumpf RC, Freymann GV, editors. Proceedings of SPIE: advanced fabrication technologies for micro/nano optics and photonics V; 2012. Sakakura, 2008, Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses, Appl Phys Lett, 93, 231112, 10.1063/1.3046101 Shimizu, 2010, Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses, J Appl Phys, 108, 073533, 10.1063/1.3483238 Miyamoto, 2011, Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses, Opt Express, 19, 10714, 10.1364/OE.19.010714 Shimizu, 2012, Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates, Opt Express, 20, 934, 10.1364/OE.20.000934 Miyamoto, 2014, Internal modification of glass by ultrashort laser pulse and its application to microwelding, Appl Phys A, 114, 187, 10.1007/s00339-013-8115-3 Miyamoto, 2007, Local melting of glass material and its application to direct fusion welding by Ps-laser pulses, J Laser Micro/Nanoeng, 2, 7, 10.2961/jlmn.2007.01.0002 Winkler, 2006, Transient response of dielectric materials exposed to ultrafast laser radiation, Appl Phys A, 84, 413, 10.1007/s00339-006-3644-7 Bulgakova, 2013, Theoretical treatments of ultrashort pulse laser processing of transparent materials: toward understanding the volume nanograting formation and “quill” writing effect, Appl Phys B, 113, 437, 10.1007/s00340-013-5488-0 Martin, 1997, Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals, Phys Rev B, 55, 5799, 10.1103/PhysRevB.55.5799 Mermillod-Blondin, 2009, Dynamics of femtosecond laser induced voidlike structures in fused silica, Appl Phys Lett, 94, 041911, 10.1063/1.3070522 Hayasaki, 2011, Time-resolved axial-view of the dielectric breakdown under tight focusing in glass, Opt Mater Express, 1, 1399, 10.1364/OME.1.001399 Sakakura, 2005, Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass, Phys Rev B, 71, 024113, 10.1103/PhysRevB.71.024113 Hayasaki, 2011, Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass, Opt Express, 19, 5725, 10.1364/OE.19.005725 Paltauf, 2003, Photomechanical processes and effects in ablation, Chem Rev, 103, 487, 10.1021/cr010436c Varshneya, 1993 Braslavsky, 1992, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution, Chem Rev, 92, 1381, 10.1021/cr00014a007 Terazima, 1987, Measurement of the triplet lifetime and the quantum yield of triplet formation of phthalazine by the time-resolved thermal lens method, Chem Phys Lett, 141, 237, 10.1016/0009-2614(87)85016-9 Power, 1990, Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory, Appl Opt, 29, 52, 10.1364/AO.29.000052 Atkins, 2006 Fan, 2012, Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation, Opt Lett, 37, 2955, 10.1364/OL.37.002955 Hashimoto, 2015, Time-resolved micro-Raman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing, J Laser Micro/Nanoeng, 10, 29, 10.2961/jlmn.2015.01.0006 Varshneya, 1993, 189 Wu, 2012, Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation, Opt Express, 20, 28893, 10.1364/OE.20.028893 Wu, 2013, Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding, Opt Express, 21, 24049, 10.1364/OE.21.024049 Sugioka, 2011, Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train, Opt Lett, 36, 2734, 10.1364/OL.36.002734 Varshneya, 1993 Sun, 1947, Fundamental condition of glass formation, J Am Ceram Soc, 30, 277, 10.1111/j.1151-2916.1947.tb19654.x Walker, 1982, Soret separation of mid-ocean ridge basalt magma, Contrib Mineral Petrol, 79, 231, 10.1007/BF00371514 Lesher, 1986, Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies, J Geophys Res: Solid Earth, 91, 6123, 10.1029/JB091iB06p06123 Kyser, 1998, The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids, Contrib Mineral Petrol, 133, 373, 10.1007/s004100050459 Shimizu, 2011, Formation mechanism of element distribution in glass under femtosecond laser irradiation, Opt Lett, 36, 2161, 10.1364/OL.36.002161 Shimizu M et al. Control of element distribution in glass with femtosecond laser. In: Proceedings SPIE; 2012. He, 2014, One-step photoinscription of asymmetrically oriented fresnoite-type crystals in glass by ultrafast laser, Opt Lett, 39, 5423, 10.1364/OL.39.005423 Mardilovich, 2011, Ultrafast laser processing of hybrid micro- and nano-structures in silicate glasses, MRS Online Proc Lib Arch, 1365 Mardilovich, 2013, Ultrafast laser fabrication of hybrid micro- and nano-structures in semiconductor-doped borosilicate glasses, Int J Appl Glass Sci, 4, 87, 10.1111/ijag.12021 Mardilovich, 2013, Mesoscopic photonic structures in glasses by femtosecond-laser fashioned confinement of semiconductor quantum dots, Appl Phys Lett, 102, 151112, 10.1063/1.4802724 Troy N et al. Structural modification in Er-Yb doped zinc phosphate glasses with megahertz repetition rate femtosecond pulses. In: Proc. of SPIE Vol. 8247, Frontiers in ultrafast optics: biomedical, scientific and industrial applications XII; 2012. Jackson, 2012, Towards high-power mid-infrared emission from a fibre laser, Nat Photon, 6, 423, 10.1038/nphoton.2012.149 Sundaram, 2003, Microexplosions in tellurite glasses, Appl Phys A, 76, 379, 10.1007/s00339-002-1824-7 Shimotsuma, 2006, Nanofabrication in transparent materials with a femtosecond pulse laser, J Non-Cryst Solids, 352, 646, 10.1016/j.jnoncrysol.2005.11.060 Fernandez TT et al. Laser writing in tellurite glasses. In: Rivera VAG, Manzani D, editors. Technological advances in tellurite glasses: properties, processing, and applications. Springer International Publishing: Cham.; 2017. p. 259–76. Terai, 1975, Ionic diffusion in glasses, J Non-Cryst Solids, 18, 217, 10.1016/0022-3093(75)90022-8 Kahnt, 1996, Ionic transport in glasses, J Non-Cryst Solids, 203, 225, 10.1016/0022-3093(96)00354-7 Hoyo, 2013, Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm −1 internal gain at 1534 nm, Laser Phys Lett, 10, 105802, 10.1088/1612-2011/10/10/105802 Jha, 2012, Rare-earth ion doped TeO2 and GeO2 glasses as laser materials, Prog Mater Sci, 57, 1426, 10.1016/j.pmatsci.2012.04.003 Xu, 2005, Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glasses as materials for three-dimensional display, Mater Lett, 59, 3066, 10.1016/j.matlet.2005.05.022 Juan, 2011, Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens, J Phys D: Appl Phys, 44, 495402, 10.1088/0022-3727/44/49/495402 Shimizu, 2010, Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation, Appl Phys A, 100, 1001, 10.1007/s00339-010-5879-6 Shelby JE. Introduction to glass science and technology. The Royal Society of Chemistry: Cambridge, UK; 2006. p. 51–71. Wheaton, 2007, Evaluation of phase separation in glasses with the use of atomic force microscopy, J Non-Cryst Solids, 353, 4767, 10.1016/j.jnoncrysol.2007.06.073 Ams, 2005, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses, Opt Express, 13, 5676, 10.1364/OPEX.13.005676 Cheng, 2003, Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser, Opt Lett, 28, 55, 10.1364/OL.28.000055 Diez-Blanco, 2007, Deep subsurface waveguides with circular cross section produced by femtosecond laser writing, Appl Phys Lett, 91, 051104, 10.1063/1.2761298 Brodeur, 1999, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J Opt Soc Am B, 16, 637, 10.1364/JOSAB.16.000637 Sheldon, 1982, Laser-induced thermal lens effect: a new theoretical model, Appl Opt, 21, 1663, 10.1364/AO.21.001663 Ramaswamy, 1988, Ion-exchanged glass waveguides: a review, J Lightwave Technol, 6, 984, 10.1109/50.4090 Yang, 2008, Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing, Opt Express, 16, 16215, 10.1364/OE.16.016215 Toney Fernandez T, Siegel J, Solis J. Expanding the parameter space in optimizing ultrafast laser written structures for photonics device applications. In: Progress in electromagnetics research symposium. Prague, Czech Republic; 2015. del Hoyo, 2014, Control of waveguide properties by tuning femtosecond laser induced compositional changes, Appl Phys Lett, 105, 131101, 10.1063/1.4896846 Kazansky, 2007, “Quill” writing with ultrashort light pulses in transparent materials, Appl Phys Lett, 90, 151120, 10.1063/1.2722240 Yang, 2008, Ultrashort-pulse laser calligraphy, Appl Phys Lett, 93, 171109, 10.1063/1.3010375 Kazansky, 2011, Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front, Opt Express, 19, 20657, 10.1364/OE.19.020657 Gerchberg, 1972, A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik, 35, 237 Zhang, 2014, Fundamentals of phase-only liquid crystal on silicon (LCOS) devices, Light Sci Appl, 3, e213, 10.1038/lsa.2014.94 Di Leonardo, 2007, Computer generation of optimal holograms for optical trap arrays, Opt Express, 15, 1913, 10.1364/OE.15.001913 Bengtsson, 1994, Kinoform design with an optimal-rotation-angle method, Appl Opt, 33, 6879, 10.1364/AO.33.006879