Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels
Tóm tắt
Từ khóa
Tài liệu tham khảo
Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces (unpublished preprint 2005)
Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Jpn. 64, 1091–1146 (2012)
Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2006)
Bui, H.-Q., Duong, X.T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229, 2449–2502 (2012)
Christ, M.: A $$T(b)$$ T ( b ) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60(61), 601–628 (1990)
Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)
Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18, 995–1066 (2012)
Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. With the Assistance of W.G. Bade and R.G. Bartle. Pure and Applied Mathematics, vol. 7, xiv + 858 pp. Interscience Publishers Inc, New York (1958)
Duong, X.T., Yan, L.: Hardy spaces of spaces of homogeneous type. Proc. Am. Math. Soc. 131, 3181–3189 (2003)
Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)
Duong, X.T., Yan, L.: New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)
Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)
Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and The Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. American Mathematical Society, Providence, viii+132 pp (1991)
Dafni, G., Xiao, J.: Some new tent spaces and duality theorems for fractional Carleson measures and $$Q_\alpha ({\mathbb{R}}^n)$$ Q α ( R n ) . J. Funct. Anal. 208, 377–422 (2004)
Essén, M., Janson, S., Peng, L., Xiao, J.: $$Q$$ Q spaces of several real variables. Indiana Univ. Math. J. 49, 575–615 (2000)
Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)
Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. Contemp. Math. 338, 143–172 (2003)
Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174, 81–126 (2008)
Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric measure spaces and an application to semilinear elliptic equations. Trans. Am. Math. Soc. 355, 2065–2095 (2003)
Grigor’yan, A., Liu, L.: Heat kernel and Lipschitz–Besov spaces. Forum Math. (2014). doi: 10.1515/forum-2014-0034
Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40, 1212–1284 (2012)
Han, Y., Müller, D., Yang, D.: Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)
Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal. 1–250 (2008). Art. ID 893409
Ivanov, K., Petrushev, P., Xu, Y.: Decomposition of spaces of distributions induced by tensor product bases. J. Funct. Anal. 263, 1147–1197 (2012)
Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367, 121–189 (2015)
Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)
Li, P., Xiao, J., Yang, Q.: Global mild solutions of fractional Navier–Stokes equations with small initial data in critical Besov- $$Q$$ Q spaces. Electron. J. Differ. Equ. 185, 1–37 (2014)
Li, P., Zhai, Z.: Well-posedness and regularity of generalized Navier–Stokes equations in some critical $$Q$$ Q -spaces. J. Funct. Anal. 259, 2457–2519 (2010)
Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)
Liang, Y., Yang, D., Yuan, W., Sawano, Y., Ullrich, T.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Diss. Math. (Rozpr. Mat.) 489, 1–114 (2013)
Mazzucato, A.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1369 (2003)
Ouhabaz, E.M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)
Peetre, J.: New Thoughts on Besov Spaces. Duke University, Durham (1976)
Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)
Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 435–458 (2005)
Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin. (Engl. Ser.) 25, 1223–1242 (2009)
Sawano, Y.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces on domains. Math. Nachr. 283, 1456–1487 (2010)
Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257, 871–904 (2007)
Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)
Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. I. Eurasian Math. J 3, 110–149 (2012)
Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. II. Eurasian Math. J 4, 82–124 (2013)
Tang, L., Xu, J.S.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)
Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)
Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics, vol. 20. European Mathematical Society (EMS), Zürich (2013)
Xiao, J.: Holomorphic $$Q$$ Q Classes. Lecture Notes in Mathematics, vol. 1767. Springer, Berlin (2001)
Xiao, J.: Geometric $$Q_p$$ Q p Functions. Birkhäuser, Basel (2006)
Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier–Stokes system. Dyn. Partial Differ. Equ. 4, 227–245 (2007)
Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008)
Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces. Math. Z. 265, 451–480 (2010)
Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal. 73, 3805–3820 (2010)
Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generallized Carleson measure spaces. Appl. Anal. 92, 549–561 (2013)
Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singap.) 11, 1350021, 45 (2013)
Yuan, W., Haroske, D.D., Skrzypczak, L., Yang, D.: Embedding properties of weighted Besov-type spaces. Anal. Appl. (Singap.) (2014). doi: 10.1142/S0219530514500493
Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)