Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels

Collectanea Mathematica - Tập 67 Số 2 - Trang 247-310 - 2016
Liguang Liu1, Dachun Yang2, Wen Yuan2
1Department of Mathematics, School of Information, Renmin University of China, Beijing 100872, China
2School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012)

Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces (unpublished preprint 2005)

Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Jpn. 64, 1091–1146 (2012)

Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2006)

Bui, H.-Q., Duong, X.T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229, 2449–2502 (2012)

Christ, M.: A $$T(b)$$ T ( b ) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60(61), 601–628 (1990)

Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18, 995–1066 (2012)

Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. With the Assistance of W.G. Bade and R.G. Bartle. Pure and Applied Mathematics, vol. 7, xiv + 858 pp. Interscience Publishers Inc, New York (1958)

Duong, X.T., Yan, L.: Hardy spaces of spaces of homogeneous type. Proc. Am. Math. Soc. 131, 3181–3189 (2003)

Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)

Duong, X.T., Yan, L.: New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)

Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and The Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. American Mathematical Society, Providence, viii+132 pp (1991)

Dafni, G., Xiao, J.: Some new tent spaces and duality theorems for fractional Carleson measures and $$Q_\alpha ({\mathbb{R}}^n)$$ Q α ( R n ) . J. Funct. Anal. 208, 377–422 (2004)

Essén, M., Janson, S., Peng, L., Xiao, J.: $$Q$$ Q spaces of several real variables. Indiana Univ. Math. J. 49, 575–615 (2000)

Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. Contemp. Math. 338, 143–172 (2003)

Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174, 81–126 (2008)

Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric measure spaces and an application to semilinear elliptic equations. Trans. Am. Math. Soc. 355, 2065–2095 (2003)

Grigor’yan, A., Liu, L.: Heat kernel and Lipschitz–Besov spaces. Forum Math. (2014). doi: 10.1515/forum-2014-0034

Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40, 1212–1284 (2012)

Han, Y., Müller, D., Yang, D.: Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)

Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal. 1–250 (2008). Art. ID 893409

Ivanov, K., Petrushev, P., Xu, Y.: Decomposition of spaces of distributions induced by tensor product bases. J. Funct. Anal. 263, 1147–1197 (2012)

Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367, 121–189 (2015)

Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

Li, P., Xiao, J., Yang, Q.: Global mild solutions of fractional Navier–Stokes equations with small initial data in critical Besov- $$Q$$ Q spaces. Electron. J. Differ. Equ. 185, 1–37 (2014)

Li, P., Zhai, Z.: Well-posedness and regularity of generalized Navier–Stokes equations in some critical $$Q$$ Q -spaces. J. Funct. Anal. 259, 2457–2519 (2010)

Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

Liang, Y., Yang, D., Yuan, W., Sawano, Y., Ullrich, T.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Diss. Math. (Rozpr. Mat.) 489, 1–114 (2013)

Mazzucato, A.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1369 (2003)

Ouhabaz, E.M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

Peetre, J.: New Thoughts on Besov Spaces. Duke University, Durham (1976)

Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)

Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 435–458 (2005)

Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin. (Engl. Ser.) 25, 1223–1242 (2009)

Sawano, Y.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces on domains. Math. Nachr. 283, 1456–1487 (2010)

Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257, 871–904 (2007)

Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)

Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. I. Eurasian Math. J 3, 110–149 (2012)

Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. II. Eurasian Math. J 4, 82–124 (2013)

Tang, L., Xu, J.S.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)

Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

Triebel, H.: Theory of Function Spaces. II. Birkhäuser, Basel (1992)

Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics, vol. 20. European Mathematical Society (EMS), Zürich (2013)

Xiao, J.: Holomorphic $$Q$$ Q Classes. Lecture Notes in Mathematics, vol. 1767. Springer, Berlin (2001)

Xiao, J.: Geometric $$Q_p$$ Q p Functions. Birkhäuser, Basel (2006)

Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier–Stokes system. Dyn. Partial Differ. Equ. 4, 227–245 (2007)

Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008)

Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces. Math. Z. 265, 451–480 (2010)

Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal. 73, 3805–3820 (2010)

Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generallized Carleson measure spaces. Appl. Anal. 92, 549–561 (2013)

Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singap.) 11, 1350021, 45 (2013)

Yuan, W., Haroske, D.D., Skrzypczak, L., Yang, D.: Embedding properties of weighted Besov-type spaces. Anal. Appl. (Singap.) (2014). doi: 10.1142/S0219530514500493

Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)

Yuan, W., Sickel, W., Yang, D.: On the coincidence of certain approaches to smoothness spaces related to Morrey spaces. Math. Nachr. 286, 1571–1584 (2013)