Bernstein functions and rates in mean ergodic theorems for operator semigroups
Tóm tắt
Từ khóa
Tài liệu tham khảo
I. Assani and M. Lin, On the one-sided ergodic Hilbert transform, Ergodic Theory and Related Fields, Contemp. Math. 430, Amer. Math. Soc., Providence, RI, 2007, pp. 21–39.
A. V. Balakrishnan, An operational calculus for infinitesimal generators of semigroups, Trans. Amer. Math. Soc. 91 (1959), 330–353.
F. E. Browder, On the iteration of transformations in noncompact minimal dynamical systems, Proc. Amer. Math. Soc. 9 (1958), 773–780.
P. Butzer and A. Gessinger, Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equations. A survey, Mathematical Analysis, Wavelets, and Signal Processing, Contemp. Math. 190, Amer. Math. Soc., Providence, RI, 1995, pp. 67–94.
P. Butzer and U. Westphal, The mean ergodic theorem and saturation, Indiana Univ. Math. J. 20 (1971), 1163–1174.
P. Clément and J. Prüss, Completely positive measures and Feller semigroups, Math. Ann. 287 (1990), 73–105.
G. Cohen, C. Cuny, and M. Lin, The one-sided ergodic Hilbert transform in Banach spaces, Studia Math. 196 (2010), 251–263.
G. Cohen, C. Cuny, and M. Lin, On convergence of power series of Lp contractions, Banach Center Publications, 2013, to appear.
G. Cohen and M. Lin, Laws of large numbers with rates and the one-sided ergodic Hilbert transform, Illinois J. Math. 47 (2003), 997–1031.
G. Cohen and M. Lin, Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory, Israel J. Math. 148 (2005), 41–86.
G. Cohen and M. Lin, The one-sided ergodic Hilbert transform of normal contractions, Characteristic Functions, Scattering Functions and Transfer Functions, Birkhäuser Verlag, Basel, 2010, pp. 77–98.
C. Cuny, Pointwise ergodic theorems with rate and application to limit theorems for stationary processes, Stoch. Dyn. 11 (2011), 135–155.
C. Cuny, On the a.s. convergence of the one-sided ergodic Hilbert transform, Ergodic Theory Dynam. Systems 29 (2009), 1781–1788.
C. Cuny and M. Lin, Pointwise ergodic theorems with rate and application to the CLT for Markov chains, Ann. Inst. Henri Poincaré, Probab. Statist. 45 (2009), 710–733.
R. deLaubenfels, Automatic extensions of functional calculi, Studia Math. 114 (1995), 237–259.
Y. Derriennic, Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the “central limit theorem”, Discrete Contin. Dyn. Syst. 15 (2006), 143–158.
Y. Derriennic and M. Lin, Fractional Poisson equations and ergodic theorems for fractional coboundaries, Israel J. Math. 123 (2001), 93–130.
N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185–217.
K. J. Engel, and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, Berlin, 2000.
V. F. Gaposhkin, On the rate of decrease of the probabilities of ∈-deviations for means of stationary processes, Mat. Zametki 64 (1998), 366–372 (in Russian); translation in Math. Notes 64 (1998), 316–321.
J. Goldstein, C. Radin, and R. Showalter, Convergence rates of ergodic limits for semigroups and cosine functions, Semigroup Forum 16 (1978), 89–95.
A. Gomilko, M. Haase, and Yu. Tomilov, On rates in mean ergodic theorems, Math. Res. Lett. 18 (2011), 201–213.
M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser, Basel, 2006.
M. Haase and Yu. Tomilov, Domain characterizations of certain functions of power-bounded operators, Studia Math. 196 (2010), 265–288.
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, 3rd rev. ed., Amer. Math. Soc., Providence, RI, 1957.
F. Hirsch, Transformation de Stieltjes et fonctions opérant sur les potentiels abstraits, Théorie du potentiel et analyse harmonique, Lecture Notes in Math. 404, Springer, Berlin, 1974, pp. 149–163.
F. Hirsch, Familles d’opérateurs potentiels, Ann. Inst. Fourier 254 (1975), 263–288.
F. Hirsch, Domaines d’opérateurs représentés comme intégrales de résolvantes, J. Functional Analysis 23 (1976), 199–217.
A. G. Kachurovskiĭ, Rates of convergence in ergodic theorems, Uspekhi Mat. Nauk 51 (1996), 73–124 (in Russian); translation in Russian Math. Surveys 51 (1996), 653–703.
A. G. Kachurovskiĭ and A. V. Reshetenko, On the rate of convergence in von Neumann’s ergodic theorem with continuous time, Mat. Sb. 201 (2010), 25–32 (in Russian); translation in Sb. Math. 201 (2010), 493–500.
Th. Kaluza, Über die Koeffizienten reziproker Potenzreihen, Math. Z. 28 (1928), 161–170.
U. Krengel, Ergodic Theorems. With a supplement by Antoine Brunel, Walter de Gruyter, Berlin, 1985.
U. Krengel and M. Lin, On the range of the generator of a Markovian semigroup, Math. Z. 185 (1984), 553–565.
M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340.
M. Lin, On the uniform ergodic theorem. II, Proc. Amer. Math. Soc. 46 (1974), 217–225.
V. Nollau, Über den Logarithmus abgeschlossener Operatoren in Banachschen Räumen, Acta Sci. Math. (Szeged) 30 (1969), 161–174.
R. S. Phillips, On the generation of semigroups of linear operators, Pacific J. Math. 2 (1952), 343–369.
W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
S. Y. Shaw, Convergence rates of ergodic limits and associated solutions, J. Approx. Theory 75 (1993), 157–166.
R. L. Schilling, Subordination in the sense of Bochner and a related functional calculus, J. Austral. Math. Soc. Ser. A 64 (1998), 368–396.
R. Schilling, R. Song, and Z. Vondraček, Bernstein Functions, Walter de Gruyter, Berlin, 2010.
U. Westphal, A generalized version of the Abelian mean ergodic theorem with rates for semigroup operators and fractional powers of infinitesimal generators, Results Math. 34 (1998), 381–394.
D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.