Bernoulli functions and periodic B-splines
Tóm tắt
Bernoulli polynomials and the related Bernoulli functions are of basic importance in theoretical numerical analysis. It was shown by Golomb and others that the periodic Bernoulli functions serve to construct periodic polynomial splines on uniform meshes. In an unknown paper Wegener investigated remainder formulas for polynomial Lagrange interpolation via Bernoulli functions. We will use Wegener's kernel function to construct periodicB-splines. For uniform meshes we will show that Locher's method of interpolation by translation is applicable to periodicB-splines. This yields an easy and stable algorithm for computing periodic polynomial interpolating splines of arbitrary degree on uniform meshes via discrete Fourier transform.
Tài liệu tham khảo
Collatz, L., Quade, W.: Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsber. Preuss. Akad. Wiss.30, 383–429 (1938).
Delvos, F.-J.: Periodic interpolation on uniform meshes. J. Approximation Theory (to appear).
Delvos, F.-J.: Interpolation of odd periodic functions on uniform meshes (Meinardus, G., Nürnberger, G., eds.). ISNM74. Basel: Birkhäuser Verlag 1985.
Delvos, F.-J., Schempp, W.: On optimal periodic interpolation. J. Math. Anal. Applic.52, 553–560 (1975).
Golomb, M.: Approximation by periodic spline interpolation on uniform meshes. J. Approximation Theory1, 26–65 (1968).
Locher, F.: Interpolation on uniform meshes by translates of one function and related attenuation factors. Mathematics of Computation37, 403–416 (1981).
Meinardus, G.: Periodische Spline-Funktionen (Böhmer, K., Meinardus, G., Schempp, W., eds.). Lect. Notes in Math.501. Berlin-Heidelberg-New York: Springer-Verlag 1976.
Meinardus, G.: Periodic splines. In: Polynomial and spline approximation (Sahney, B. N., ed.). Dordrecht: D. Reidel Publishing Co. 1979.
Morsche, H. ter: On the existence and convergence of interpolating splines of arbitrary degree. In: Spline-Funktionen (Böhmer, K., Meinardus, G., Schempp, W.,eds.). Mannheim: Bibliograph. Institut 1974.
Prager, M.: Universally opitmal approximation of functionals. Aplikace Matematiky24, 406–516 (1979).
Schumaker, L. L.: Spline functions: basic theory. New York: John Wiley and Sons Inc. 1981.
Wegener, U.: Zur Theorie der Interpolation. Deutsche Mathematik1, 103–107 (1936).