Berezin Number and Numerical Radius Inequalities

Vietnam Journal of Mathematics - Trang 1-13 - 2023
Anirban Sen, Kallol Paul1
1Department of Mathematics, Jadavpur University, Kolkata, India

Tóm tắt

We present several inequalities of the Berezin norm and Berezin number for reproducing kernel Hilbert space operators which improve the existing bounds. Among these inequalities, it is shown that if A be a bounded linear operator on a reproducing kernel Hilbert space, then $$ {\textbf {ber}}^2(A) \le \frac{1}{4}{\textbf {ber}}^2(|A|+i|A^*|)+\frac{1}{8}\Vert |A|+|A^*|\Vert ^2_{\text {ber}}, $$ where $${\textbf {ber}}(A)$$ and $$\Vert A\Vert _{\text {ber}}$$ are the Berezin number and Berezin norm of A, respectively. Furthermore, we obtain upper bounds of operator norm and numerical radius for the sum of two operators on a complex Hilbert space.

Tài liệu tham khảo

Aici, S., Frakis, A., Kittaneh, F.: Refinements of some numerical radius inequalities for operators. Rend. Circ. Mat. Palermo, II. Ser. (2023). https://doi.org/10.1007/s12215-023-00864-w Bakherad, M., Hajmohamadi, M., Lashkaripour, R., Sahoo, S.: Some extensions of Berezin number inequalities on operators. Rocky Mt. J. Math. 51, 1941–1951 (2021) Bakherad, M., Yamancı, U.: New estimations for the Berezin number inequality. J. Inequal. Appl. 2020, 40 (2020) Berezin, F.A.: Quantization. Math. USSR-Izv. 8, 1109–1163 (1974) Berezin, F.A.: Covariant and contravariant symbols for operators. Math. USSR-Izv. 6, 1117–1151 (1972) Bhunia, P., Paul, K., Sen, A.: Inequalities involving Berezin norm and Berezin number. Complex Anal. Oper. Theory 17, 7 (2023) Bhunia, P., Sen, A., Paul, K.: Development of the Berezin number inequalities. Acta Math. Sin. Engl. Ser. 39, 1219–1228 (2023) Bhunia, P., Dragomir, S.S., Moslehian, M.S., Paul, K.: Lectures on Numerical Radius Inequalities. Infosys Science Foundation Series. Springer, Cham (2022) Bhunia, P., Paul, K.: New upper bounds for the numerical radius of Hilbert space operators. Bull. Sci. Math. 167, 102959 (2021) Bhunia, P., Paul, K.: Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 630, 306–315 (2021) Bhunia, P., Paul, K.: Proper improvement of well-known numerical radius inequalities and their applications. Results Math. 76, 177 (2021) Bhunia, P., Paul, K.: Furtherance of numerical radius inequalities of Hilbert space operators. Arch. Math. 117, 537–546 (2021) Cowen, C.C., Felder, C.: Convexity of the Berezin range. Linear Algebra Appl. 647, 47–63 (2022) Dragomir, S.S.: A note on numerical radius and the Kreĭn-Lin inequality. Mathematica 60, 149–151 (2018) Dragomir, S.S.: Inequalities for the norm and the numerical radius of composite operators in Hilbert spaces. In: Bandle, C., et al. (eds.) Inequalities and Applications, vol. 157, pp. 135–146. International Series of Numerical Mathematics. Birkhäuser, Basel (2009) Dragomir, S.S.: Advances in Inequalities of the Schwarz. Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, New York (2007) Garayev, M.T., Guediri, H., Gürdal, M., Alsahli, G.M.: On some problems for operators on the reproducing kernel Hilbert space. Linear Multilinear Algebra 69, 2059–2077 (2021) Gürdal, M., Alomari, M.W.: Improvements of some Berezin radius inequalities. Constr. Math. Anal. 5, 141–153 (2022) Hajmohamadi, M., Lashkaripour, R., Bakherad, M.: Improvements of Berezin number inequalities. Linear Multilinear Algebra 68, 1218–1229 (2020) Halmos, P.R.: A Hilbert Space Problems Book. Graduate Texts in Mathematics, vol. 19. Springer, New York (1982) Jana, S., Bhunia, P., Paul, K.: Numerical radius inequalities and estimation of zeros of polynomials. Georgian Math. J. 30(5), 671–682 (2023) Karaev, M.T.: Reproducing kernels and Berezin symbols techniques in various questions of operator theory. Complex Anal. Oper. Theory 7, 983–1018 (2013) Karaev, M.T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces. J. Funct. Anal. 238, 181–192 (2006) Moslehian, M.S., Khosravi, M., Drnovšek, R.: A commutator approach to Buzano’s inequality. Filomat 26, 827–832 (2012) Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Stud. Math. 168, 73–80 (2005) Moradi, H., Sababheh, M.: New estimates for the numerical radius. Filomat 35, 4957–4962 (2021) Omidvar, M.E., Moradi, H.R.: New estimates for the numerical radius of Hilbert space operators. Linear Multilinear Algebra 69, 946–956 (2021) Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics, vol. 152. Cambridge University Press, Cambridge (2016) Sahoo, S., Das, N., Rout, N.C.: On Berezin number inequalities for operator matrices. Acta Math. Sin. Engl. Ser. 37, 873–892 (2021) Sen, A., Bhunia, P., Paul, K.: Bounds for the Berezin number of reproducing kernel Hilbert space operators. Filomat 37, 1741–1749 (2023) Sen, A., Bhunia, P., Paul, K.: Berezin number inequalities of operators on reproducing kernel Hilbert spaces. Rocky Mt. J. Math. 52, 1039–1046 (2022) Simon, B.: Trace ideals and Their Applications. Cambridge University Press, Cambridge (1979) Taghavi, A., Roushan, T.A., Darvish, V.: Some upper bounds for the Berezin number of Hilbert space operators. Filomat 33, 4353–4360 (2019) Yamancı, U., Karlı, İ.M.: Further refinements of the Berezin number inequalities on operators. Linear Multilinear Algebra 70, 5237–5246 (2022) Yamancı, U., Gürdal, M.: On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space. New York J. Math. 23, 1531–1537 (2017)