Berezin Number, Grüss-Type Inequalities and Their Applications

Ulaş Yamancı1, Remziye Tunç2, Mehmet Gürdal2
1Department of Statistics, Suleyman Demirel University, Isparta, Turkey
2Department of Mathematics, Suleyman Demirel University, Isparta, Turkey

Tóm tắt

In this paper, we study the Berezin number inequalities by using the transform $$C_{\alpha ,\beta }\left( A\right) $$ on reproducing kernel Hilbert spaces (RKHS). Moreover, we give Grüss-type inequalities for selfadjoint operators in RKHS.

Tài liệu tham khảo

Abu-Omar, A., Kittaneh, F.: Notes on some spectral radius and numerical radius inequalities. Studia Math. 272, 97–109 (2015) Aronzajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950) Anastassiou, G.A.: Grüss type inequalities for the Stieltjes integral. Nonlinear Funct. Anal. Appl. 12(4), 583–593 (2007) Bakherad, M., Shebrawi, K.: Upper bounds for numerical radius inequalities involving off-diagonal operator matrices. Ann. Funct. Anal. 9(3), 297–309 (2018) Bakherad, M.: Some Berezin number inequalities for operator matrices. Czechoslov. Math. J. 68(143), 997–1009 (2018) Bakherad, M., Kittaneh, F.: Numerical radius inequalities involving commutators of G1 operators. Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-017-0726-9 Biernacki, M., Pidek, H., Ryll-Nardzewski, C.: Sur une inėgalitė entre des intėgrales dėfinies. Ann. Univ. Mariae Curie-Sklodowska Sect. A Math. 4, 1–4 (1950) Dragomir, S.S.: A generalization of Grüss’ inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74–82 (1999) Dragomir, S.S.: Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 31(4), 397–415 (2000) Dragomir, S.S.: Norm and numerical radius inequalities for a product of two linear operators in Hilbert spaces. J. Math. Inequal. 2, 499–510 (2008) Dragomir, S.S.: Inequalities of the Čebyšev and Grüss Type. Springer, New York (2012) Dragomir, S.S.: Quasi Grüss’ type inequalities for continuous functions of selfadjoint operators in Hilbert spaces. Filomat 27, 277–289 (2013) Dragomir, S.S.: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. Banach J. Math. Anal. 1, 154–175 (2017) Furuta, T., Micic Hot, J., Pecaric, J., Seo, Y.: Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb (2005) Garayev, M.T., Gürdal, M., Okudan, A.: Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators. Math. Inequal. Appl. 3, 883–891 (2016) Garayev, M.T., Gürdal, M., Saltan, S.: Hardy type inequality for reproducing kernel Hilbert space operators and related problems. Positivity 21, 1615–1623 (2017) Grüss, G.: Über das Maximum des absoluten Betrages von \(\frac{1}{b-a} {\displaystyle \int \limits _{a}^{b}} f\left( x\right) g\left( x\right) dx-\frac{1}{\left( b-a\right) ^{2}} {\displaystyle \int \limits _{a}^{b}} f\left( x\right) dx {\displaystyle \int \limits _{a}^{b}} g\left( x\right) dx.\) Math. Z. 39, 215–226 (1935) Gustafson, K.E., Rao, D.K.M.: Numerical Range. Springer, New York (1997) Karaev, M.T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces. J. Funct. Anal. 238, 181–192 (2006) Karaev, M.T.: Reproducing Kernels and Berezin symbols techniques in various questions of operator theory. Complex Anal. Oper. Theory 7, 983–1018 (2013) Kittaneh, F., Moslehian, M.S., Yamazaki, T.: Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 471, 46–53 (2015) Mitronovic, D.S., Pecaric, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993) Nordgren, E., Rosenthal, P.: Boundary values of Berezin symbols. Oper. Theory Adv. Appl. 73, 362–368 (1994) Saitoh, S., Sawano, Y.: Theory of Reproducing Kernels and Applications. Springer, Singapore (2016) Yamancı, U., Gürdal, M., Garayev, M.T.: Berezin number inequality for convex function in reproducing kernel Hilbert space. Filomat 31, 5711–5717 (2017) Yamancı, U., Gürdal, M.: On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space. N. Y. J. Math. 23, 1531–1537 (2017) Yamancı, U., Garayev, M.T., Çelik, C.: Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results. Linear Multilinear Algebra 67(4), 830–842 (2019)