Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus

American Geophysical Union (AGU) - Tập 9 Số 5 - Trang 677-692 - 1994
Philippe Van Cappellen, Ellery D. Ingall

Tóm tắt

We examine the relationships between ocean ventilation, primary production, water column anoxia, and benthic regeneration of phosphorus using a mass balance model of the coupled marine biogeochemical cycles of carbon (C) and phosphorus (P). The elemental cycles are coupled via the Redfield C/P ratio of marine phytoplankton and the C/P ratio of organic matter preserved in marine sediments. The model assumes that on geologic timescales, net primary production in the oceans is limited by the upwelling of dissolved phosphorus to the photic zone. The model incorporates the dependence on bottom water oxygenation of the regeneration of nutrient phosphorus from particulate matter deposited at the water‐sediment interface. Evidence from marine and lacustrine settings, modern and ancient, demonstrates that sedimentary burial of phosphorus associated with organic matter and ferric oxyhydroxides decreases when bottom water anoxia‐dysoxia expands. Steady state simulations show that a reduction in the rate of thermohaline circulation, or a decrease of the oxygen content of downwelling water masses, intensifies water column anoxia‐dysoxia and at the same time increases surface water productivity. The first effect reflects the declining supply of oxygen to the deeper parts of the ocean. The second effect is caused by the enhanced benthic regeneration of phosphorus from organic matter and ferric oxyhydroxides. Sedimentary burial of organic carbon and authigenic calcium phosphate mineral (francolite), on the other hand, is promoted by reduced ocean ventilation. According to the model, global‐scale anoxia‐dysoxia leads to a more efficient recycling of reactive phosphorus within the ocean system. Consequently, higher rates of primary production and organic carbon burial can be achieved, even when the continental supply of reactive phosphorus to the oceans remains unchanged.

Từ khóa


Tài liệu tham khảo

10.1029/ME003p0375

10.1144/GSL.SP.1984.015.01.34

Baccini P., 1985, Chemical Processes in Lakes, 189

10.1126/science.244.4905.684

10.1029/PA005i003p00319

10.1016/0012-821X(73)90037-X

10.2475/ajs.282.4.451

10.1016/0031-0182(89)90186-7

Berner E. K., 1987, The Global Water Cycle: Geochemistry and Environment

10.2475/ajs.289.4.333

10.1007/978-3-642-76064-8_15

10.2475/ajs.278.3.257

10.1016/0198-0149(84)90068-2

10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2

Broecker W. S., 1982, Tracers in the Sea

10.1016/0198-0149(89)90022-8

10.1007/978-3-642-76064-8_14

10.1126/science.217.4565.1140

10.4319/lo.1988.33.4.0562

10.1016/0016-7037(94)90380-8

10.1038/308346a0

10.1111/j.1574-6968.1980.tb05652.x

10.1016/0009-2541(81)90100-5

10.2110/pec.77.25.0019

10.1007/978-3-642-76064-8_18

10.1016/0016-7037(79)90095-4

10.2475/ajs.282.4.474

10.4319/lo.1988.33.6part2.1542

10.1080/01490458709385971

10.1130/0091-7613(1991)019<0702:ONDAOL>2.3.CO;2

Holland H. D., 1978, The Chemistry of the Atmosphere and the Oceans

10.1515/9780691220239

Holland H. D., 1986, The oxygen content of our atmosphere, Earth Miner. Sci. Bull., 55, 14

10.1038/347017a0

Holser W. T., 1988, Chemical Cycles in the Evolution of the Earth, 105

10.1146/annurev.es.19.110188.000513

10.1016/0016-7037(94)90033-7

10.1016/0016-7037(90)90326-G

10.1016/0016-7037(93)90433-W

10.1016/S0074-6142(08)62697-2

10.1144/gsjgs.137.2.0171

10.2475/ajs.288.2.101

10.1130/0091-7613(1993)021<0675:AEITLF>2.3.CO;2

10.1016/0043-1354(93)90171-D

10.1016/0016-7037(81)90164-2

10.2166/wst.1993.0504

10.1038/335152a0

10.2475/ajs.286.5.337

10.1016/0016-7037(92)90308-6

10.1144/gsjgs.137.2.0139

10.1111/j.1365-3121.1992.tb00826.x

10.1007/978-3-642-76064-8_1

10.1016/0198-0149(87)90086-0

Meybeck M., 1982, Carbon nitrogen and phosphorus transport by world rivers, Am. J. Sci., 287, 429

Millero F. J., 1992, Chemical Oceanography

Müller P. J., Productivity, sedimentation rateorganic matter in the oceans, I, Organic carbon preservation, Deep Sea Res., 26, 1347, 10.1016/0198-0149(79)90003-7

10.1038/325803a0

10.2136/sssaj1975.03615995003900050017x

Pedersen T. F., 1990, Anoxia vs. productivity: What controls the formation of organic‐rich sediments and sedimentary rocks?, Am. Assoc. Pet. Geol. Bull., 74, 454

Pratt L. M., 1984, Influence of paleoenvironmental factors on preservation of organic matter in middle Cretaceous Greenhorn Formation, Pueblo, Colorado, Am. Assoc. Pet. Geol. Bull., 68, 1146

Press W. H., 1989, Numerical Recipes: The Art of Scientific Computing

Redfield A. C., 1958, The biological control of chemical factors in the environment, Am. Sci., 46, 205

10.1111/j.1502-3931.1971.tb01864.x

10.4319/lo.1992.37.7.1460

10.1016/0016-7037(93)90035-U

10.1029/GB002i002p00115

Savdra C. E., 1984, Development of a comprehensive oxygen‐deficient marine biofacies model: Evidence from Santa Monica, San PedroSanta Barbara Basins, California Continental Borderland, Am. Assoc. Pet. Geol. Bull, 68, 1179

Schlanger S. O., 1976, Cretaceous anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179

10.1144/GSL.SP.1987.026.01.24

10.1126/science.155.3767.1269

10.1016/0016-7037(87)90176-1

Slansky M., 1986, Geology of Sedimentary Phosphates

10.4319/lo.1984.29.6.1149

10.1016/0009-2541(86)90107-5

10.1126/science.219.4586.849

Stumm W., 1972, he Changing Chemistry of the Oceans

10.1038/288260a0

10.1007/978-1-4684-7612-5_5

10.1029/GM032p0163

Tromp T. K., 1994, A global model for the early diagenesis of organic carbon and phosphorus in marine sediments, Geochim. Cosmochim. Acta

10.1144/GSL.SP.1991.058.01.01

10.1002/iroh.19880730608

10.2475/ajs.288.4.289

Weissert H., 1990, Siliciclastics in the early Cretaceous Tethys and North Atlantic Oceans: Documents of periodic greenhouse climate conditions, Mem. Soc. Geol. Ital., 44, 59

10.1130/0091-7613(1979)7<147:CAEITE>2.0.CO;2

10.1130/0091-7613(1991)019<0167:MFTBS>2.3.CO;2

Wignall P. B., 1993, Source Rocks in a Sequence Stratigraphie Framework AAPG Stud. Geol, 35

10.1007/978-3-642-76064-8