Benefits of spatiotemporal modeling for short‐term wind power forecasting at both individual and aggregated levels
Tóm tắt
Từ khóa
Tài liệu tham khảo
Breiman L., 1992, Submodel selection and evaluation in regression. The X‐random case, International Statistical Review/Revue Internationale de Statistique, 291
Cressie N., 2015, Statistics for spatial data
Dowell J., 2016, Very‐short‐term probabilistic wind power forecasts by sparse vector autoregression, IEEE Transactions on Smart Grid, 7, 763
Garver L. L., 1966, Effective load carrying capability of generating units, IEEE Transactions on Power apparatus and Systems, 8, 910, 10.1109/TPAS.1966.291652
Gneiting T., 2010, Continuous parameter spatio‐temporal processes, Handbook of Spatial Statistics, 97, 427, 10.1201/9781420072884-c23
R. Kohavi 1995 1137 1145
Lau A., 2010, Approaches for multi‐step density forecasts with application to aggregated wind power, The Annals of Applied Statistics, 1311
Lindström J., 2013, SpatioTemporal: An R package for spatio‐temporal modelling of air‐pollution, Journal of Statical Software
Paciorek C. J., 2007, Bayesian smoothing with Gaussian processes using Fourier basis functions in the spectral GP package, Journal of Statistical Software, 19, nihpa22751, 10.18637/jss.v019.i02
Pinson P. &Tastu J.(2013).Discrimination ability of the energy score(Technical Report). Lyngby Denmark: Technical University of Denmark.
Ross S., 2015, A first course in probability
Toth Z., 2003, Forecast verification: A practitioners guide in atmospheric science
Whittle P., 1963, Stochastic‐processes in several dimensions, Bulletin of the International Statistical Institute, 40, 974