Vi sinh vật có lợi cho ong mật: vấn đề và tiến bộ

Springer Science and Business Media LLC - Tập 100 - Trang 9469-9482 - 2016
Daniele Alberoni1, Francesca Gaggìa1, Loredana Baffoni1, Diana Di Gioia1
1Department of Agricultural Science, University of Bologna, Bologna, Italy

Tóm tắt

Ngày nay, ong mật đang phải đối mặt với nhiều yếu tố sinh học và phi sinh học gây căng thẳng, điều này có thể phần nào ảnh hưởng đến dịch vụ thụ phấn và năng suất của tổ ong. Việc Liên minh Châu Âu cấm sử dụng kháng sinh như là các tác nhân điều trị đối với các tác nhân gây bệnh ở ong đã kích thích việc tìm kiếm các lựa chọn tự nhiên thay thế. Kiến thức gia tăng về thành phần và chức năng của hệ vi sinh vật đường ruột của ong và mối liên hệ giữa một hệ vi sinh vật đường ruột cân bằng và trạng thái sức khỏe đã khuyến khích nghiên cứu về việc sử dụng vi sinh vật đường ruột để cải thiện sức khỏe của ong. Qua đó, chúng ta đang chứng kiến sự chuyển giao của “khái niệm probiotic” vào khoa học về ong. Trong bài tổng quan này, chúng tôi xem xét vai trò của hệ vi sinh vật đường ruột của ong mật trong sức khỏe của ong và mô tả một cách phản biện các ứng dụng hiện có của vi sinh vật có lợi như các tác nhân kiểm soát dịch hại và hỗ trợ sức khỏe. Phần lớn các chủng vi sinh vật, chủ yếu thuộc các chi Lactobacillus, Bifidobacterium và Bacillus, được phân lập từ túi mật hoặc ruột ong mật, nhưng một số ứng dụng liên quan đến các chủng từ môi trường hoặc công thức cho việc tiêu thụ của động vật và con người. Tổng thể, các kết quả thu được cho thấy tác động tích cực của các chủng vi sinh vật được áp dụng đối với sức khỏe và năng suất của ong, đặc biệt nếu sử dụng các chủng có nguồn gốc từ ong. Tuy nhiên, hiện tại vẫn chưa thể kết luận liệu chiến lược này có bao giờ hiệu quả hay không. Cụ thể, nhiều khía cạnh liên quan đến việc thiết lập tổng thể các thí nghiệm, liều lượng, thời gian và thời gian điều trị cần được tối ưu hóa, đồng thời xem xét tính an toàn vi sinh vật của các sản phẩm từ tổ ong (ví dụ như phấn hoa và mật ong). Thêm vào đó, cần có một cuộc điều tra sâu về tác động đến miễn dịch và sinh lý của vật chủ. Cuối cùng, các người sử dụng cuối cùng của các sản phẩm, tức là những người nuôi ong, cần được xem xét để đạt được các sản phẩm chất lượng cao, tiết kiệm chi phí và dễ sử dụng.

Từ khóa

#vi sinh vật có lợi; ong mật; sức khỏe ong; kiểm soát dịch hại; vi sinh vật đường ruột

Tài liệu tham khảo

Aizen MA, Harder LD (2009) The global stock of domesticated honeybees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. doi:10.1016/j.cub.2009.03.071 Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y (2010a) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12(3):774–782. doi:10.1111/j.1462-2920.2009.02123.x Alaux C, Ducloz F, Crauser D, Le Conte Y (2010b) Diet effects on honeybee immunocompetence. Biol Lett 23:562–565. doi:10.1098/rsbl.2009.0986 Alberoni D, Baffoni L, Gaggia F, Ryan P, Murphy K, Ross RP, Biavati B, Stanton C, Di Gioia D (2015) Administration of lactobacilli and bifidobacteria on Apis mellifera L. beehives to increase health of the bee super-organism. In: Microbial Diversity 2015, the challenge of complexity. Perugia, pp 107–108 Alippi AM, Reynaldi FJ (2006) Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J Invertebr Pathol 91:141–146. doi:10.1016/j.jip.2005.12.002 Anbutsu H, Fukatsu T (2010) Evasion, suppression and tolerance of Drosophila innate immunity by a male-killing Spiroplasma endosymbiont. Insect Mol Biol 19:481–488. doi:10.1111/j.1365-2583.2010.01008.x Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 17;8(12):e83125. doi: 10.1371/journal.pone.0083125 Anderson KE, Rodrigues PAP, Mott BM, Maes P, Corby-Harris V (2016) Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb Ecol 71:1008–1019. doi:10.1007/s00248-015-0716-2 Andrearczyk S, Kadhim MJ, Knaga S (2014) Influence of a probiotic on the mortality, sugar syrup ingestion and infection of honeybees with Nosema spp. under laboratory assessment. Med Weter 70:762–765 Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290. doi:10.1111/j.1462-2920.2009.01953.x Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2:29–34. doi:10.3920/BM2010.0024 Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. Bee-gut. Microbiol Res 166:1–13. doi:10.1016/j.micres.2010.01.003 Audisio MC, Sabaté DC, Benítez-Ahrendts MR (2015) Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef Microbs 25:1–10. doi:10.3920/BM2014.0155 Babendreier D, Joller D, Romeis J, Bigler F, Widmer F (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 87:87–97. doi:10.1111/j.1574-6941.2006.00249.x Baffoni L, Gaggìa F, Alberoni D, Cabbri R, Nanetti A, Biavati B, Di Gioia D (2016) Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef Microbs 7:45–51. doi:10.3920/BM2015.0085 Barribeau SM, Sadd BM, du Plessis L, Brown MJ, Buechel SD, Cappelle K, Carolan JC, Christiaens O, Colgan TJ, Erler S, Evans J, Helbing S, Karaus E, Lattorff HM, Marxer M, Meeus I, Näpflin K, Niu J, Schmid-Hempel R, Smagghe G, Waterhouse RM, Yu N, Zdobnov EM, Schmid-Hempel P (2015) A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol 16:1–21. doi:10.1186/s13059-015-0628-y Ben Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37. doi:10.1038/ismej.2009.82 Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577. doi:10.1007/s00253-015-7186-9 Bíliková K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Šimúth J (2002) Apisimin, a new serine–valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. FEBS Lett 528:125–129. doi:10.1016/S0014-5793(02)03272-6 Bond J, Plattner K, Hunt K (2014) Fruit and Tree Nuts Outlook: Economic Insight. US Pollination-Services Market. USDA Economic Research Service Situation and Outlook FTS-357SA. Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P, Fitzgerald GF, Margolles A, van Sinderen D, Ventura M (2012) Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7(9):e44229. doi:10.1371/journal.pone.0044229 Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidol 41:278–294. doi:10.1051/apido/2010012 Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi:10.1038/nrmicro1098 Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A 101:12974–12979. doi:10.1073/pnas.0405207101 Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344. doi:10.1101/gad.1827009 Butler È, Alsterfjord M, Olofsson TC, Karlsson C, Malmström J, Vásquez A (2013) Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress. BMC Microbiol 13:235. doi:10.1186/1471-2180-13-235 Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus spp.). ISME J 8:2369–2379. doi:10.1038/ismej.2014.68 Casteels P, Ampe C, Jacobs F, Vaek M, Tempst P (1989) Apidaecins: antimicrobial peptides from honeybees. EMBO J 8:2387–2391 Casteels P, Ampe C, Riviere L, Damme JV, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antimicrobial peptide in the honeybee (Apis mellifera). Eur J Biochem 187:381–386. doi:10.1111/j.1432-1033.1990.tb15315.x Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of hymenoptaecin, an antimicrobial peptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054 Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS, Anderson KE (2014) Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol 80:7460–7472. doi:10.1128/AEM.02043-14 Corby-Harris V, Snyder L, Meador CA, Naldo R, Mott B, Anderson KE (2016) Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. J Econ Entomol 109:537–543. doi:10.1093/jee/tow012 Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287. doi:10.1126/science.1146498 Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr Bio 17:693–702. doi:10.1016/j.cub.2007.06.008 Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970. doi:10.1128/AEM.01336-10 Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317. doi:10.1111/j.1751-7915.2011.00312.x Di Gioia D, Aloisio I, Mazzola G, Biavati B (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol 98:563–577. doi:10.1007/s00253-013-5405-9 Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci U S A 110:18466–18471. doi:10.1073/pnas.1314923110 Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509. doi:10.1016/S0923-2508(02)01361-X Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298. doi:10.1111/j.1461-0248.2005.00828.x Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 10(3):e0118748. doi:10.1371/journal.pone.0118748 Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423. doi:10.1371/journal.ppat.1000423 Doublet V, Labarussias M, Miranda JR, Moritz RF, Paxton RJ (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983. doi:10.1111/1462-2920.12426 EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards) (2015) Statement on the update of the list of QPS - recommended biological agents intentionally added to food or feed as notified to EFSA 3: suitability of taxonomic units notified to EFSA until September 2015. EFSA J 13(12):4331. doi:10.2903/j.efsa.2015.433 Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SG, Vásquez A (2015) Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genom 16:284. doi:10.1186/s12864-015-1476-6 Engel P, Moran NA (2013) Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4:60–65. doi:10.4161/gmic.22517 Engel P, Kwong WK, Moran NA (2013) Frischella perrara gen. nov., sp. nov., a Gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol 63:3646–3651. doi:10.1099/ijs.0.049569-0 European Commission (2010) Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. EU 15:1–70. http://ec.europa.eu/health/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf. Accessed 31 may 2016 Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756. doi:10.1093/jee/97.3.752 Evans JD, Pettis JS (2005) Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution 59:2270–2274. doi:10.1111/j.0014-3820.2005.tb00935.x Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Bio 15:645–656. doi:10.1111/j.1365-2583.2006.00682.x Fang Q, Wang L, Zhu J, Li Y, Song Q, Stanley DW, Akhtar Z, Ye G (2010) Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genom 11:484 FAO/WHO (2002) Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. Guidelines for the evaluation of probiotics in food. Joint working group report on drafting. London, Ontario, 2002:1–11. http://who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf Fernandez JM, Puerta F, Cousinou M, Dios-Palomares R, Campano F, Redondo L (2012) Asymptomatic presence of Nosema spp. in Spanish commercial apiaries. J Inverte Pathol 111:106–110. doi:10.1016/j.jip.2012.06.008 Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415 Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidol 41:99–108. doi:10.1051/apido/2009065 Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:15–28. doi:10.1016/j.ijfoodmicro.2010.02.031 Gaggìa F, Di Gioia D, Baffoni L, Biavati B (2011) The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Tech 22:58–66. doi:10.1016/j.tifs.2011.03.003 Gaggìa F, Baffoni L, Stenico V, Alberoni D, Buglione E, Lilli A, Di Gioia D, Porrini C (2015) Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. Bulletin Insect 68:321–327 Gill RJ, Baldock KC, Brown MJ, Cresswell JE, Dicks LV, Fountain MT, Garratt MPD, Gough LA, Heard MS, Holland JM, Ollerton J, Stone GN, Tang CQ, Vanbergen AJ, Vogler AP, Woodward G, Arce AN, Boatman ND, Brand-Hardy R, Breeze TD, Green M, Hartfield CM, O’Connor RS, Osborne JL, Phillips J, Sutton PB (2016) Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators. Adv Eco Res 54:135–206. doi:10.1016/bs.aecr.2015.10.007 Gisder S, Genersch E (2015) Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells. PLoS One 10(2):e0117200. doi: 10.1371/journal.pone.0117200 Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8(3):e58165. doi:10.1371/journal.pone.005816 Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. doi:10.1126/science.1255957 Gündüz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proce Roy Soc London Biol Sci 276:987–991. doi:10.1098/rspb.2008.1476 Hamdi C, Daffonchio D (2011) Methods for the prevention and control of pathogenic infections in bees and relative composition. Patent Application WO/2011/138310. Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Ricci I, Boudabous A, Borin S, Manino A, Bandi C, Alma A, Daffonchio D, Cherif A (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135:524–533. doi:10.1111/j.1439-0418.2010.01609.x Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702–702. doi:10.1126/science.1162418 Higes M, Martin-Hernandez R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidol 41:375–392. doi:10.1051/apido/2010019 Holst EC (1945) An antibiotic from a bee pathogen. Science 102:593–594 Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118. doi:10.1126/science.1058709 Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23:672–677. doi:10.1016/j.tree.2008.07.011 Hui-Ru J, Yan-Yan W, Ping-Li D, Qiang W, Ting Z (2015) Effects of the sublethal doses of imidacloprid on the bacterial diversity in the midgut of Apis mellifera Ligustica (Hymenoptera: Apidae). Acta Entomol Sin 58:139–146. doi:10.16380/j.kcxb.2015.02.005 Imler J, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21. doi:10.1159/000086648 Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. doi:10.1126/science.1188235 Janashia I, Alaux C (2016) Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). J Econ Entomol. doi:10.1093/jee/tow065 Jefferson JM, Dolstad HA, Sivalingam MD, Snow JW (2013) Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One 8(1):e54097. doi:10.1371/journal.pone.0054097 Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, Robinson GE (2015) Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10(4):e0123911. doi:10.1371/journal.pone.0123911 Kazimierczak-Baryczko M, Szymaś B (2006) Improvement of the composition of pollen substitute for honey bee (Apis mellifera L.), through implementation of probiotic preparation. J Apic Sci 50:15–22 Kaznowiski A, Szymas B, Jazdzinska E, Kazimierczak M, Paetz H, Mokracka J (2005) The effect of probiotic supplementation on the content of intestinal microflora and chemical composition of worker honey bees (Apis mellifera). J Apic Res 44:10–14. doi:10.1080/00218839.2005.11101139 Killer J, Dubná S, Sedláček I, Švec P (2014) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 64:152–157. doi:10.1099/ijs.0.053033-0 Klaudiny J, Albert Š, Bachanová K, Kopernický J, Šimúth J (2005) Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol 35:11–22. doi:10.1016/j.ibmb.2004.09.007 Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230. doi:10.1111/j.1574-6976.2009.00208.x Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313. doi:10.1098/rspb.2006.3721 Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018. doi:10.1099/ijs.0.044875-0 Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. doi:10.1038/nrmicro.2016.43 Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A 111:11509–11514. doi:10.1073/pnas.1405838111 Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidol 41:353–363. doi:10.1051/apido/2010017 Lee H, Churey JJ, Worobo RW (2009) Isolation and characterization of a protective bacterial culture isolated from honey active against American foulbrood disease. FEMS Microbiol Lett 296:39–44. doi:10.1111/j.1574-6968.2009.01615.x Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton IL (2015) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol 17:796–815. doi:10.1111/1462-2920.12526 Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. doi:10.1146/annurev.immunol.25.022106.141615 Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840. doi:10.1128/AEM.07810-11 Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini C (2003) Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull Insect 56:59–62 Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura M (2015) Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82:980–991. doi:10.1128/AEM.03500-15 Moran NA (2015) Genomics of the honey bee microbiome. Curr Opin Insect Sci 10:22–28. doi:10.1016/j.cois.2015.04.003 Müller S, Garcia-Gonzalez E, Genersch E, Süssmuth RD (2015) Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat Prod Rep 32:765–778. doi:10.1039/C4NP00158C Newton IL, Sheehan KB, Lee FJ, Horton MA, Hicks RD (2013) Invertebrate systems for hypothesis-driven microbiome research. Microbiome Sci Med 1(1). doi:10.2478/micsm-2013-0001 Nieto A, Roberts SPM, Kemp J, Rasmont P, Kuhlmann M, Criado GM, Biesmeijer JC, Bogusch P, Dathe HH, De la Rúa P, De Meulemeester T, Dehon M, Dewulf A, Ortiz-Sánchez FJ, Lhomme P, Pauly A, Potts SG, Praz C, Quaranta M, Radchenko VG, Scheuchl E, Smit J, Straka J, Terzo M, Tomozii B, Window J, Michez D (2014) European red list of bees. Publication Office of the European Union. http://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_bees.pdf. Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57:356–363. doi:10.1007/s00284-008-9202-0 Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 64:3109–3119. doi:10.1099/ijs.0.059600-0 Pătruică S, Dumitrescu G, Stancu A, Bura M, Bănătean Dunea I (2012) The effect of prebiotic and probiotic feed supplementation on the wax glands of worker bees (Apis mellifera). J Anim Sci Biotech 45:268–271 Porrini C, Mutinelli F, Bortolotti L, Granato A, Laurenson L, Roberts K, Gallina A, Silvester N, Medrzycki P, Renzi T, Sgolastra F, Lodesani M (2016) The status of honey bee health in Italy: results from the nationwide bee monitoring network. PLoS One 11(5):e0155411. doi:10.1371/journal.pone.0155411 Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007 Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. doi:10.1128/AEM.01861-14 Ptaszyńska AA, Borsuk G, Mułenko W, Olszewski K (2013) Impact of ethanol on Nosema spp. infected bees. Med Weter 69:736–741 Ptaszyńska AA, Borsuk G, Zdybicka-Barabas A, Cytryńska M, Małek W (2016) Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitol Res 115:397–406. doi:10.1007/s00436-015-4761-z Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J (2010) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microbiol Ecol 59:199–211. doi:10.1007/s00248-009-9595-8 Rokop ZP, Horton MA, Newton ILG (2015) Interactions between co-occurring lactic acid bacteria in honey bee hives. Appl Environ Microbiol 81:7261–7270. doi:10.1128/AEM.01259-15 Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119. doi:10.1016/j.jip.2009.07.016 Ruottinen L, Berg P, Kantanen J, Kristensen TN, Praebel A, Groeneveld L (2014) Status and conservation of the nordic brown bee: final report. Nordic Genetic Resource Center (NordGen) http://vbn.aau.dk/ws/files/207960984/Ruottinen_et_al_2014.pdf Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782. doi:10.1126/science.1149357 Sabaté DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:193–199. doi:10.1016/j.resmic.2009.03.002 Sabaté DC, Cruz MS, Benítez-Ahrendts MR, Audisio MC (2012) Beneficial effects of Bacillus subtilis subsp. subtilis Mori2, a honey-associated strain, on honeybee colony performance. Probiotics Antimicrob Proteins 4:39–46. doi:10.1007/s12602-011-9089-0011-9089-0 Sanders ME, Lenoir-Wijnkoop I, Salminen S, Merenstein DJ, Gibson GR, Petschow BW, Nieuwdorp M, Tancredi DJ, Cifelli CJ, Jacques P, Pot B (2014) Probiotics and prebiotics: prospects for public health and nutritional recommendations. Ann N Y Acad Sci 1309:19–29. doi:10.1111/nyas.12377 Saraiva MA, Zemolin APP, Franco JL, Boldo JT, Stefenon VM, Triplett EW, De Oliveira FA, Roesch LFW (2015) Relationship between honeybee nutrition and their microbial communities. Antonie Van Leeuwenhoek 107:921–933. doi:10.1007/s10482-015-0384-8 Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440. doi:10.1016/j.femsre.2004.01.003 Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056. doi:10.1073/pnas.1009906107 Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26. doi:10.1016/0168-1605(96)00970-1 Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 4:403–414. doi:10.1016/j.cmet.2011.07.012 Sun Z, Zhang W, Guo C, Yang X, Liu W, Wu Y, Song Y, Kwok LY, Cui Y, Menghe B, Yang R, Hu L, Zhang H (2015) Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. PLoS One 10(2):e0117912. doi:10.1371/journal.pone.011791 Szymaś B, Łangowska A, Kazimierczak-Baryczko M (2012) Histological structure of the midgut of honey bees (Apis mellifera L.) fed pollen substitutes fortified with probiotics. J Apic Sci 56:5–12. doi:10.2478/v10289-012-0001-2 Tarpy DR, Mattila HR, Newtond ILG (2015) Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Env Microbiol 81:3182–3191. doi:10.1128/AEM.00307-15 Tontou R, Gaggìa F, Baffoni L, Devescovi G, Venturi V, Giovanardi G, Stefani E (2015) Molecular characterisation of an endophyte showing a strong antagonistic activity against Pseudomonas syringae pv. actinidiae. Plant Soil. doi:10.1007/s11104-015-2624-0 Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7(3):e33188. doi:10.1371/journal.pone.0033188 Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. doi:10.1371/journal.pone.0021550 Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423. doi:10.1146/annurev.ento.53.103106.093301 Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626. doi:10.1038/nature07840 Wu M, Sugimura Y, Takaya N, Takamatsu D, Kobayashi M, Taylor D, Yoshiyama M (2013) Characterization of bifidobacteria in the digestive tract of the Japanese honeybee, Apis cerana japonica. J Invertebr Pathol 112:88–93. doi:10.1016/j.jip.2012.09.005 Yoshiyama M, Kimura K (2009) Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebr Pathol 102:91–96. doi:10.1016/j.jip.2009.07.005 Yoshiyama M, Wu M, Sugimura Y, Takaya N, Kimoto-Nira H, Suzuki C (2013) Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. J Invertebr Pathol 112:62–67. doi:10.1016/j.jip.2012.09.002