Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ru, 2000, Effective bending stiffness of carbon nanotubes, Phys. Rev. B, 62, 9973, 10.1103/PhysRevB.62.9973
Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X
Zhang, 2006, Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation, Appl. Phys. Lett., 89, 081904, 10.1063/1.2336622
Zhang, 2008, Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation, J. Phys. D: Appl. Phys., 41, 055404, 10.1088/0022-3727/41/5/055404
Poole, 1996, Micro-hardness of annealed and work- hardened copper polycrystals, Scripta Mater., 34, 559, 10.1016/1359-6462(95)00524-2
Lam, 2003, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477, 10.1016/S0022-5096(03)00053-X
McFarland, 2005, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J. Micromech. Microeng., 15, 1060, 10.1088/0960-1317/15/5/024
Mindlin, 1962, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415, 10.1007/BF00253946
Koiter, 1964, Couple stresses in the theory of elasticity: I and II, Proc. K. Ned. Akad. Wet. ((B)B, 67, 17
Toupin, 1964, Theory of elasticity with couple stresses, Arch. Ration. Mech. Anal., 17, 85, 10.1007/BF00253050
Eringen, 1972, Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1, 10.1016/0020-7225(72)90070-5
Eringen, 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703, 10.1063/1.332803
Vardoulakis, 1995
Aifantis, 1999, Gradient deformation models at nano, micro and macro scales, J. Eng. Mater. Technol., 121, 189, 10.1115/1.2812366
Fleck, 1993, A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 1825, 10.1016/0022-5096(93)90072-N
Fleck, 2001, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245, 10.1016/S0022-5096(01)00049-7
Peddieson, 2003, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41, 305, 10.1016/S0020-7225(02)00210-0
Wang, 2007, Application of nonlocal continuum mechanics to static analysis of micro and nano-structures, Phys. Lett. A, 363, 236, 10.1016/j.physleta.2006.10.093
Reddy, 2007, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45, 288, 10.1016/j.ijengsci.2007.04.004
Thai, 2012, A nonlocal beam theory for bending, buckling and vibration of nanobeams, Int. J. Eng. Sci., 52, 56, 10.1016/j.ijengsci.2011.11.011
Thai, 2012, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 54, 58, 10.1016/j.ijengsci.2012.01.009
Aydogdu, 2009, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E, 41, 1651, 10.1016/j.physe.2009.05.014
Kong, 2009, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int. J. Eng. Sci., 47, 487, 10.1016/j.ijengsci.2008.08.008
Wang, 2010, A micro scale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. A/Solids, 29, 591, 10.1016/j.euromechsol.2009.12.005
Akgöz, 2011, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, Int. J. Eng. Sci., 49, 1268, 10.1016/j.ijengsci.2010.12.009
Akgöz, 2012, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Arch. Appl. Mech., 82, 423, 10.1007/s00419-011-0565-5
Kahrobaiyan, 2012, A strain gradient functionally graded Euler–Bernoulli beam formulation, Int. J. Eng. Sci., 52, 65, 10.1016/j.ijengsci.2011.11.010
Akgöz, 2013, Buckling analysis of functionally graded microbeams based on the strain gradient theory, Acta Mech., 224, 2185, 10.1007/s00707-013-0883-5
Ansari, 2011, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Compos. Struct., 94, 221, 10.1016/j.compstruct.2011.06.024
Yang, 2002, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731, 10.1016/S0020-7683(02)00152-X
Park, 2006, Bernoulli–Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16, 2355, 10.1088/0960-1317/16/11/015
Kong, 2008, The size-dependent natural frequency of Bernoulli–Euler micro-beams, Int. J. Eng. Sci., 46, 427, 10.1016/j.ijengsci.2007.10.002
Ma, 2008, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, 56, 3379, 10.1016/j.jmps.2008.09.007
Şimşek, 2010, Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, Int. J. Eng. Sci., 48, 1721, 10.1016/j.ijengsci.2010.09.027
Reddy, 2011, Microstructure-dependent couples stress theories of functionally graded beams, J. Mech. Phys. Solids, 59, 2382, 10.1016/j.jmps.2011.06.008
Şimşek, 2013, Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory, Compos. Struct., 95, 740, 10.1016/j.compstruct.2012.08.036
Akgöz, 2013, Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM), Compos. Part B Eng., 55, 263, 10.1016/j.compositesb.2013.06.035
Akgöz, 2013, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, Compos. Struct., 98, 314, 10.1016/j.compstruct.2012.11.020
Reddy, 1984, A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 745, 10.1115/1.3167719
Touratier, 1991, An efficient standard plate theory, Int. J. Eng. Sci., 29, 901, 10.1016/0020-7225(91)90165-Y
Soldatos, 1992, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech., 94, 195, 10.1007/BF01176650
Karama, 2003, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., 40, 1525, 10.1016/S0020-7683(02)00647-9
Aydogdu, 2009, A new shear deformation theory for laminated composite plates, Compos. Struct., 89, 94, 10.1016/j.compstruct.2008.07.008
Salamat-talab, 2012, Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory, Int. J. Mech. Sci., 57, 63, 10.1016/j.ijmecsci.2012.02.004
Nateghi, 2012, Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory, Appl. Math. Modell., 36, 4971, 10.1016/j.apm.2011.12.035
Şimşek, 2013, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, Int. J. Eng. Sci., 64, 37, 10.1016/j.ijengsci.2012.12.002
Şimşek, 2013, A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory, Compos. Struct., 101, 47, 10.1016/j.compstruct.2013.01.017
Akgöz, 2013, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, Int. J. Eng. Sci., 70, 1, 10.1016/j.ijengsci.2013.04.004
Akgöz, 2014, A new trigonometric beam model for buckling of strain gradient microbeams, Int. J. Mech. Sci., 81, 88, 10.1016/j.ijmecsci.2014.02.013
Akgöz, 2014, Shear deformation beam models for functionally graded microbeams with new shear correction factors, Compos. Struct., 112, 214, 10.1016/j.compstruct.2014.02.022
Akgöz, 2014, Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, Int. J. Eng. Sci., 85, 90, 10.1016/j.ijengsci.2014.08.011
Lei, 2013, Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory, Int. J. Eng. Sci., 72, 36, 10.1016/j.ijengsci.2013.06.012
Sudak, 2003, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, J. Appl. Phys., 94, 7281, 10.1063/1.1625437
Zhang, 2006, Investigation of buckling of double-walled carbon nanotubes embedded in an elastic medium using the energy method, Int. J. Mech. Sci., 48, 53, 10.1016/j.ijmecsci.2005.09.010
Murmu, 2009, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41, 1232, 10.1016/j.physe.2009.02.004
Murmu, 2009, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci., 46, 854, 10.1016/j.commatsci.2009.04.019
Lim, 2010, New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes, J. Comput. Theor. Nanosci., 7, 988, 10.1166/jctn.2010.1443
Zhang, 2007, Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments, Phys. Rev. B, 75, 045408, 10.1103/PhysRevB.75.045408
Zhang, 2007, Thermal buckling of initially compressed single-walled carbon nanotubes by molecular dynamics simulation, Carbon, 45, 2614, 10.1016/j.carbon.2007.08.007
Yuan, 2009, Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes, Carbon, 47, 1526, 10.1016/j.carbon.2009.01.048
Lim, 2007, Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams, J. Appl. Phys., 101, 054312, 10.1063/1.2435878
Li, 2004, Vibrational behaviors of multi-walled carbon nanotube- based nanomechanical resonators, Appl. Phys. Lett., 84, 121, 10.1063/1.1638623
Li, 2008, Structures of water molecular nanotube induced by axial tensile strains, Phys. Lett. A, 372, 6288, 10.1016/j.physleta.2008.08.038
Liew, 2008, Flexural wave propagation in single-walled carbon nanotubes, J. Comput. Theor. Nanosci., 5, 581, 10.1166/jctn.2008.019
Sun, 2008, The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method, Comput, Meth. Appl. Mech. Eng, 197, 3001, 10.1016/j.cma.2008.02.003
Lim, 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Appl. Math. Mech, 31, 37, 10.1007/s10483-010-0105-7
Lim, 2010, Nonlocal stress theory for buckling instability of nanotubes: new predictions on stiffness strengthening effects of nanoscales, J. Comput. Theor. Nanosci., 7, 2104, 10.1166/jctn.2010.1591
Sedighi, 2013, Vibrations of microbeams actuated by an electric field via parameter expansion method, Acta Astronaut., 85, 19, 10.1016/j.actaastro.2012.11.014
Sedighi, 2014, Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory, Acta Astronaut., 95, 111, 10.1016/j.actaastro.2013.10.020
Ebrahimi, 2015, Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment, Acta Astronaut., 113, 29, 10.1016/j.actaastro.2015.03.031
Reddy, 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys., 103, 023511, 10.1063/1.2833431
Arda, 2014, Torsional statics and dynamics of nanotubes embedded in an elastic medium, Compos. Struct., 114, 80, 10.1016/j.compstruct.2014.03.053
Ansari, 2012, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Compos. Part B: Eng., 43, 2985, 10.1016/j.compositesb.2012.05.049
Brischetto, 2014, A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes, Compos. Part B: Eng., 61, 222, 10.1016/j.compositesb.2014.01.046
Lu, 2012, Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling, Compos. Part B: Eng., 43, 1902, 10.1016/j.compositesb.2012.02.002
Lei, 2012, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Compos. Part B: Eng., 43, 64, 10.1016/j.compositesb.2011.04.032