Nghiên cứu chuẩn hóa năng lượng gió ngoài khơi 10 MW TLB

Journal of Ocean Engineering and Marine Energy - Tập 10 Số 1 - Trang 1-34 - 2024
Iman Ramzanpoor1, Martin Nuernberg2, Longbin Tao1
1Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK
2Newcastle Marine Services Ltd., Newcastle Upon Tyne, UK

Tóm tắt

Bài báo này trình bày một nghiên cứu chuẩn hóa về chuyển động và phản ứng kéo căng động của bốn nền tảng gió nổi nhằm xác minh một thiết kế đổi mới với ý định giảm chi phí tổng thể của một thiết kế bền bỉ, đáng tin cậy và an toàn. Một mã mã hóa khí-hải-dịch huyết-linh hoạt được áp dụng để chuẩn hóa một tuabin gió nổi căng chân (TLB) 10 MW với các loại công nghệ hàng đầu hiện nay cho các nền tảng gió ngoài khơi nổi, cụ thể là tuabin gió nổi loại phao, bán chìm và nền tảng chân căng (TLP). Nghiên cứu này giả định rằng các nền tảng sẽ được triển khai ở vùng phía bắc Biển Bắc, với độ sâu nước 110 m dưới nhiều điều kiện môi trường khác nhau, bao gồm mô tả trường gió từ gió đồng đều đến gió hỗn loạn biến thiên. Các kết quả phản ứng động thu được cho thấy phản ứng chuyển động thấp cho nền tảng TLB trong tất cả các trường hợp tải thiết kế. Cụ thể hơn, phản ứng chuyển động lắc và nghiêng của TLB không đáng kể trong cả điều kiện vận hành và sống sót, cho phép giảm khoảng cách giữa các tuabin gió riêng lẻ và tăng tổng công suất phát điện của các trang trại gió. Một lợi ích bổ sung là các hệ thống tuabin gió có thể được lắp đặt mà không cần sửa đổi đáng kể độ nghiêng của hệ thống điều khiển. Nền tảng TLB có cấu trúc đơn giản hơn, điều này làm đơn giản hóa quy trình xây dựng và có khả năng giảm chi phí đáng kể.

Từ khóa

#tuabin gió nổi #nền tảng TLB #nghiên cứu chuẩn hóa #phản ứng động học #tự động hóa trong thiết kế tuabin gió

Tài liệu tham khảo

ACTEON (2021) Intermoor-world leader in mooring technology. https://acteon.com/moorings-anchors/intermoor/. Accessed 2021

Adam F, Myland T, Dahlhaus F, Großmann J (2014) Scale tests of the GICON®-TLP for wind turbines. In: ASME 2014 33rd international conference on ocean, offshore and arctic engineering, American Society of Mechanical Engineers Digital Collection

Alexandre A, Percher Y, Choisnet T, Buils Urbano R, Harries R (2018) Coupled analysis and numerical model verification for the 2MW Floatgen demonstrator project with IDEOL platform. In: ASME 2018 1st international offshore wind technical conference, San Francisco, California, USA. American Society of Mechanical Engineers Digital Collection

Al-Solihat MK, Nahon M (2016) Stiffness of slack and taut moorings. Ships Offshore Struct 11(8):890–904

Amano RS (2017) Review of wind turbine research in 21st century. J Energy Resour Technol. https://doi.org/10.1115/1.4037757

Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Hansen MH, Blasques FPAA, Gaunaa M, Natarajan A (2013) The DTU 10-MW reference wind turbine. Danish Wind Power Research 2013. Trinity, Denmark, 27–28 May 2013

Borg M, Collu M (2015) A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines. Philos Trans R Soc A Math Phys Eng Sci 373(2035):20140076

Bossler A (2013) Japan’s floating offshore wind projects: an overview. Maine Ocean and Wind Industry Initiative: MOWII Webinar (May 2013)

BRIDON BEKAERT (2020) Market leading rope solutions for offshore oil & gas. https://www.bridon-bekaert.com/en-gb. Accessed 2020

Bulder B, van Hees M, Henderson A, Huijsmans R, Pierik J, Snijders E, Wijnants G, Wolf M (2002) Study to feasibility of and boundary conditions for floating offshore wind turbines. ECN MARIN TNO TUD MSC Lagerway Windmaster 26:70–81

Butterfield S, Musial W, Jonkman J, Sclavounos P (2007) Engineering challenges for floating offshore wind turbines. National Renewable Energy Laboratory (NREL), Golden

Carbon Trust (2015) Floating offshore wind: market and technology review. Report prepared for the Scottish Government, June 2015

Castro-Santos L, Diaz-Casas V (2016) Floating offshore wind farms. Springer, Cham

CATAPULT (2018) Macroeconomic benefits of floating offshore wind in the UK. Industry Report, 29 October 2018

CATAPULT (2018) Macroeconomic benefits of floating offshore wind in the UK. 5bd78f98e76ae_Macroeconomic benefits of offshore wind in the UK -October 2018 (2).pdf. Accessed 04 Feb 2019

Cermelli C, Roddier D, Weinstein A (2012) Implementation of a 2MW floating wind turbine prototype offshore Portugal. In: Offshore technology conference

Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM (2013) Importance of second-order difference-frequency wave-diffraction forces in the validation of a FAST semi-submersible floating wind turbine model. (55423):V008T009A019

Crozier A (2011) Design and dynamic modeling of the support structure for a 10 MW offshore wind turbine. Institutt for energi-og prosessteknikk, Trondheim

DNV G (2019) Recommended practice: coupled analysis of floating wind turbines. DNVGL-RP-0286. DNV GL AS, Høvik, Oslo, Norway

Equinor (2018) Hywind—leading floating offshore wind solution. https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us.html. Accessed 6 Nov 2018

Faltinsen O (1993) Sea loads on ships and offshore structures. Cambridge University Press, Cambridge

Fukushima Offshore (2014) Fukushima floating offshore wind farm demonstration project (Fukushima FORWARD). https://www.offshorewind.biz/2014/10/30/fukushima-offshore-floating-wind-project-moves-forward/

Fulton G, Malcolm D, Moroz E (2006) Design of a semi-submersible platform for a 5MW wind turbine. In: 44th AIAA aerospace sciences meeting and exhibit, 09–12 January 2006. Reno, Nevada, USA

George J (2014) WindFloat design for different turbine sizes. Master's thesis project, Instituto Superior Técnico Technical University of Lisbon, Portugal, MS

Henderson A, Leutz R, Fujii T (2002) Potential for floating offshore wind energy in Japanese waters. In: Proceedings of the twelfth (2002) international offshore and polar engineering conference, 26–31 May 2002, Kitakyushu, Japan

Henderson AR, Witcher D (2010) Floating offshore wind energy—a review of the current status and an assessment of the prospects. Wind Eng 34(1):1–16

International renewable Energy Agency (IRENA) (2016) Floating foundations: a game changer for offshore wind power. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Offshore_Wind_Floating_Foundations_2016.pdf. Accessed 12 Mar 2019

James R, Ros MC (2015) Floating offshore wind: market and technology review. The Carbon Trust, London

James R, Weng W-Y, Spradbery C, Jones J, Matha D, Mitzlaff A, Ahilan R, Frampton M, Lopes M (2018) Floating wind joint industry project—phase I summary report. Carbon Trust Tech Rep 19:2–20

Jonkman BJ (2009) TurbSim user’s guide: version 150. National Renewable Energy Lab (NREL), Golden

Jonkman J (2010a) Definition of the floating system for phase IV of OC3. National Renewable Energy Laboratory (NREL), Golden

Jonkman J (2010b) Index of/public/jjonkman/NRELOffshrBsline5MW. http://wind.nrel.gov/public/jjonkman/NRELOffshrBsline5MW/

Jonkman J, Sclavounos P (2006) Development of fully coupled aeroelastic and hydrodynamic models for offshore wind turbines. In: 44th AIAA aerospace sciences meeting and exhibit, 09–12 January 2006. Reno, Nevada, USA

Jonkman JM, Buhl ML Jr (2007a) Loads analysis of a floating offshore wind turbine using fully coupled simulation. National Renewable Energy Lab. (NREL), Golden

Jonkman JM, Buhl ML Jr (2007b) Loads analysis of a floating offshore wind turbine using fully coupled simulation. In: Wind power conference and exhibition, Los Angeles, CA

Kolios A, Rodriguez-Tsouroukdissian A, Salonitis K (2016) Multi-criteria decision analysis of offshore wind turbines support structures under stochastic inputs. Ships Offshore Struct 11(1):38–49

Lee KH (2005) Responses of floating wind turbines to wind and wave excitation. Massachusetts Institute of Technology, Cambridge

Lee C-H, Newman J (2005) Computation of wave effects using the panel method. In: WIT transactions on state-of-the-art in science and engineering 18.

Leimeister M, Kolios A, Collu M (2018) Critical review of floating support structures for offshore wind farm deployment. J Phys Conf Ser 1104:012007

Liu Y, Li S, Yi Q, Chen D (2016) Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review. Renew Sustain Energy Rev 60:433–449

Liu Y, Xiao Q, Incecik A, Peyrard C, Wan D (2017) Establishing a fully coupled CFD analysis tool for floating offshore wind turbines. Renew Energy 112:280–301

Maciel JG (2010) The WindFloat project. Lisbon: edp: 24

Madsen PH, Risø D (2008) Introduction to the IEC 61400–1 standard. Risø National Laboratory, Technical University of Denmark, Roskilde

Mahfouz MY, Molins C, Trubat P, Hernández S, Vigara F, Pegalajar-Jurado A, Bredmose H, Salari M (2021) Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves. Wind Energy Sci 6(3):867–883

Mast E, Rawlinson R, Sixtensson C (2015) Market study floating wind in the Netherlands: potential of floating offshore wind. TKI Wind op Zee, DNV GL

Matha D (2010) Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009. National Renewable Energy Lab. (NREL), Golden

Matha D, Sandner F, Molins C, Campos A, Cheng PW (2015) Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design. Philos Trans R Soc A 373(2035):20140350

Musial W, Butterfield S, Ram B (2006) Energy from offshore wind: preprint. National Renewable Energy Laboratory (NREL), Golden

Myhr (2016) Developing offshore floating wind turbines: the Tension-Leg-Buoy design. PhD Thesis, Norwegian University of Life Science

Myhr A, Maus KJ, Nygaard TA (2011) Experimental and computational comparisons of the OC3-HYWIND and tension-leg-buoy (TLB) Floating Wind Turbine Conceptual Designs. In: The twenty-first international offshore and polar engineering conference, Maui, Hawaii, USA, International Society of Offshore and Polar Engineers, p 8

Myhr A, Bjerkseter C, Ågotnes A, Nygaard TA (2014) Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew Energy 66:714–728

Nilsson D, Westin A (2014) Floating wind power in Norway analysis of future opportunities and challenges. MS thesis, Lund University, Sweden

Paulsen US, Vita L, Madsen HA, Hattel J, Ritchie E, Leban KM, Berthelsen PA, Carstensen S (2012) 1st DeepWind 5 MW baseline design. Energy Procedia 24:27–35

PFOWF (2022) Environmental statement: offshore non-technical summary. https://marine.gov.scot/sites/default/files/eia_report_volume_1_-_non-technical_summary_redacted.pdf. Accessed 23 Nov 2022

PrinciplePower (2022) Kincardine Offshore Windfarm. https://www.principlepower.com/projects/kincardine-offshore-wind-farm. Accessed 2022

Ramzanpoor I, Nuernberg M, Tao L (2019) Coupled numerical analysis of a concept TLB type floating offshore wind turbine. In: ASME 2019 38th international conference on ocean, offshore and arctic engineering, Glasgow, UK. American Society of Mechanical Engineers Digital Collection

Roald L, Jonkman J, Robertson A, Chokani N (2013) The effect of second-order hydrodynamics on floating offshore wind turbines. Energy Procedia 35:253–264

Robertson A, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, Luan C (2014) Definition of the semisubmersible floating system for phase II of OC4. National Renewable Energy Lab. (NREL), Golden

Robertson AN, Jonkman JM (2011) Loads analysis of several offshore floating wind turbine concepts. In: The twenty-first international offshore and polar engineering conference, International Society of Offshore and Polar Engineers, Maui, Hawaii, USA

Rodrigues S, Restrepo C, Kontos E, Pinto RT, Bauer P (2015) Trends of offshore wind projects. Renew Sustain Energy Rev 49:1114–1135

Sclavounos P, Lee S, DiPietro J, Potenza G, Caramuscio P, De Michele G (2010) Floating offshore wind turbines: tension leg platform and taught leg buoy concepts supporting 3-5 MW wind turbines. In: European wind energy conference EWEC, pp 20–23. Warsaw, Poland, 20–23 April 2010

Singhal G, Connolly A, Laranjinha M, McKinnon C, Mortimer A (2021). Independent assessment of current floater concepts for floating wind application. In: SNAME 26th offshore symposium, 06–07 April 2021 (Virtual). OnePetro

Statoil (2017) Statoil to build the world’s first floating wind farm: Hywind Scotland. https://www.statoil.com/en/news/hywindscotland.html. Accessed 15 Jan 2018

Sugianto DN, Zainuri M, Darari A, Suripin S, Darsono S, Yuwono N (2017) Wave height forecasting using measurement wind speed distribution equation in Java Sea, Indonesia. Int J Civ Eng Technol 8(5):604–619

Taboada JV (2015) Comparative analysis review on floating offshore wind foundations (FOWF). In: Proceedings of the 54th naval engineering and maritime industry congress, Ferrol, Spain

Tracy CCH (2007) Parametric design of floating wind turbines. Massachusetts Institute of Technology, Cambridge

Trolle J, Hornbak F (2016) Optimization of tension leg buoy with regards to stabilization failure. Master’s thesis, Aalborg University Esbjerg, Esbjerg, Denmark

Veritas DN (1994) Wave analysis by diffraction and Morison theory (WADAM). SESAM user’s manual. Det Norske Veritas (DNV), Høvik

Veritas DN (2004) DNV-OS-J101-design of offshore wind turbine structures. Det Norske Veritas, Høvik

Veritas DN (2010) Recommended practice DNV-RP-C205: environmental conditions and environmental loads. DNV, Høvik

Veritas DN (2013) DNV-OS-J103: design of floating wind turbine structures. DNV, Høvik

Vindenes H, Orvik KA, Søiland H, Wehde H (2018) Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data. Cont Shelf Res 162:1–12

Vita L, Ramachandran G, Krieger A, Kvittem MI, Merino D, Cross-Whiter J, Ackers BB (2015) Comparison of numerical models and verification against experimental data, using Pelastar TLP concept. In: ASME 2015 34th international conference on ocean, offshore and arctic engineering, American Society of Mechanical Engineers

Wayman EN, Sclavounos P, Butterfield S, Jonkman J, Musial W (2006) Coupled dynamic modeling of floating wind turbine systems: preprint. National Renewable Energy Lab. (NREL), Golden

Withee JE (2004) Fully coupled dynamic analysis of a floating wind turbine system. Naval Postgraduate School, Monterey

Witte T, Siegfriedsen S, El-Allawy M (2003) WindDeSalter® technology direct use of wind energy for seawater desalination by vapour compression or reverse osmosis. Desalination 156(1–3):275–279

Zhao J, Zhang L, Wu H (2012) Motion performance and mooring system of a floating offshore wind turbine. J Mar Sci Appl 11(3):328–334

Zwick D, Muskulus M (2016) Simplified fatigue load assessment in offshore wind turbine structural analysis. Wind Energy 19(2):265–278