Đằng sau bệnh lý của sự mất myelin liên quan đến đại thực bào trong các bệnh thần kinh viêm: tế bào Schwann mất myelin

Cellular and Molecular Life Sciences - Tập 77 - Trang 2497-2506 - 2019
Hwan Tae Park1,2, Young Hee Kim1, Kyung Eun Lee3, Jong Kuk Kim1,4
1Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, South Korea
2Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, Republic of Korea
3Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, South Korea
4Department of Neurology, Dong-A University College of Medicine, Busan, South Korea

Tóm tắt

Trong các rối loạn viêm mất myelin ngoại vi, sự mất myelin đại diện cho quá trình mất myelin từng đoạn, trong đó lớp myelin của tế bào Schwann (SC) tạo myelin bị loại bỏ hoàn toàn bởi đại thực bào, hoặc suy thoái myelin một phần ở vùng paranode do các kháng thể tự động tấn công vào nút/paranode. Đối với sự mất myelin từng đoạn từ các tế bào SC tạo myelin còn sống, đại thực bào xâm nhập vào trong nội thần kinh và bám vào giữa các lớp myelin và tế bào chất của các tế bào SC, và sau đó myelin được loại bỏ qua quá trình thực bào. Trong quá trình đại thực bào xâm nhập vào tế bào chất của SC từ nút Ranvier và vùng nối, các tế bào SC bị tấn công không duy trì trạng thái yên tĩnh mà chuyển hóa thành các tế bào SC mất myelin viêm (iDSCs), mà thể hiện các bệnh lý mất myelin đặc trưng, chẳng hạn như sự chưa nén myelin từ các khe Schmidt-Lanterman với sự suy thoái lớp myelin. Việc mở rộng dọc theo quá trình tự làm sạch myelin này của iDSCs vào vùng nút liên quan đến sự suy thoái của vi nhung mao nodal và các vòng paranodal, tạo ra một vị trí tiềm năng cho sự xâm nhập của đại thực bào. Ngoài việc xâm nhập vào vùng nút, đại thực bào có vẻ cũng có khả năng xâm nhập vào màng kiểu fenestrated ở giữa các tế bào SC hoặc màng mesaxon ngoài đã suy thoái của iDSC. Những hình thái mất myelin ở SC này chỉ ra rằng việc tái lập trình SC thành iDSCs có thể là điều kiện tiên quyết cho sự mất myelin viêm do đại thực bào. Ngược lại, sự mất myelin paranodal do các kháng thể tự động tấn công vào các kháng nguyên nodal/paranodal không dẫn đến sự xâm nhập của đại thực bào phụ thuộc vào iDSC và sự mất myelin phân đoạn tiếp theo. Trong bối cảnh mất myelin viêm, quan điểm mới về iDSCs cung cấp một cái nhìn quan trọng để hiểu bệnh sinh của các bệnh thần kinh ngoại vi mất myelin và thiết lập các chiến lược chẩn đoán và điều trị.

Từ khóa


Tài liệu tham khảo

Park HT, Kim JK, Tricaud N (2019) The conceptual introduction of the “demyelinating Schwann cell” in peripheral demyelinating neuropathies. Glia 67(4):571–581 Lutz AB, Barres BA (2014) Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 28(1):7–17 Jessen K, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531 Tricaud N, Park HT (2017) Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 74(22):4049–4057 Jung J, Cai W, Lee HK, Pellegatta M, Shin YK, Jang SY, Suh DJ, Wrabetz L, Feltri ML, Park HT (2011) Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration. J Neurosci 31(6):2009–2015 Park HT, Feltri ML (2011) Rac1 GTPase controls myelination and demyelination. Bioarchitecture 1(3):110–113 Webster Hd (1965) The relationship between Schmidt-Lantermann incisures and myelin segmentation during Wallerian degeneration. Ann N Y Acad Sci 122(1):29–38 Ghabriel M, Allt G (1979) The role of Schmidt-Lanterman incisures in Wallerian degeneration. II. An electron microscopic study. Acta Neuropathol 48(2):95–103 Jung J, Cai W, Jang SY, Shin YK, Suh DJ, Kim JK, Park HT (2011) Transient lysosomal activation is essential for p75 nerve growth factor receptor expression in myelinated Schwann cells during Wallerian degeneration. Anat Cell Biol 44(1):41–49 Jang SY, Shin YK, Park SY, Park JY, Lee HJ, Yoo YH, Kim JK, Park HT (2016) Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia 64(5):730–742 Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1):153–168 Jang SY, Yoon BA, Shin YK, Yun SH, Jo YR, Choi YY, Ahn M, Shin T, Park JI, Kim JK (2017) Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia 65(11):1848–1862 Dalakas MC (2011) Advances in the diagnosis, pathogenesis and treatment of CIDP. Nat Rev Neurol 7(9):507 Goodfellow JA, Willison HJ (2016) Guillain-Barré syndrome: a century of progress. Nat Rev Neurol 12(12):723 Hutton EJ, Carty L, Laurá M, Houlden H, Lunn MP, Brandner S, Mirsky R, Jessen K, Reilly MM (2011) c-Jun expression in human neuropathies: a pilot study. J peripher Nerv Syst 16(4):295–303 Kim YH, Kim YH, Shin YK, Jo YR, Park DK, Song MY, Yoon BA, Nam SH, Kim JH, Choi BO, Shin HY, Kim SW, Kim SH, Hong YB, Kim JK, Park HT (2019) p75 and neural cell adhesion molecule 1 can identify pathologic Schwann cells in peripheral neuropathies. Ann Clin Transl Neurol 6(7):1292–1301. https://doi.org/10.1002/acn3.50828 Ng JKM, Malotka J, Kawakami N, Derfuss T, Khademi M, Olsson T, Linington C, Odaka M, Tackenberg B, Prüss H (2012) Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 79(23):2241–2248 Devaux JJ, Odaka M, Yuki N (2012) Nodal proteins are target antigens in Guillain-Barré syndrome. J Peripher Nerv Syst 17(1):62–71 Mathey EK, Park SB, Hughes RA, Pollard JD, Armati PJ, Barnett MH, Taylor BV, Dyck PJB, Kiernan MC, Lin CS (2015) Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 86(9):973–985 Shin T, Ahn M, Matsumoto Y, Moon C (2013) Mechanism of experimental autoimmune neuritis in Lewis rats: the dual role of macrophages. Histol Histopathol 28(6):679–684 Prineas J (1981) Pathology of the Guillain-Barré syndrome. Ann Neurol 9(S1):6–19 Jung S, Huitinga I, Schmidt B, Zielasek J, Dijkstra CD, Toyka KV, Hartung H-P (1993) Selective elimination of macrophages by dichlormethylene diphosphonate-containing liposomes suppresses experimental autoimmune neuritis. J Neurol Sci 119(2):195–202 Koike H, Nishi R, Ikeda S, Kawagashira Y, Iijima M, Katsuno M, Sobue G (2018) Ultrastructural mechanisms of macrophage-induced demyelination in CIDP. Neurology 91(23):1051–1060 Hartung HP, Schafer B, Heininger K, Stoll G, Toyka KV (1988) The role of macrophages and eicosanoids in the pathogenesis of experimental allergic neuritis. Serial clinical, electrophysiological, biochemical and morphological observations. Brain 111:1039–1059. https://doi.org/10.1093/brain/111.5.1039 Saida K, Saida T, Brown M, Silberberg D, Asbury A (1978) Antiserum-mediated demyelination in vivo: a sequential study using intraneural injection of experimental allergic neuritis serum. Lab Invest 39(5):449–462 Lampert P (1969) Mechanism of demyelination in experimental allergic neuritis. Electron microscopic studies. Lab Invest 20(2):127–138 Midroni G, Bilbao JM (2015) Biopsy diagnosis of peripheral neuropathy. Elsevier, New York Trotter J, Smith ME (1986) The role of phospholipases from inflammatory macrophages in demyelination. Neurochem Res 11(3):349–361 Jang SY, Shin YK, Park SY, Park JY, Rha S-H, Kim JK, Lee HJ, Park HT (2015) Autophagy is involved in the reduction of myelinating Schwann cell cytoplasm during myelin maturation of the peripheral nerve. PLoS ONE 10(1):e0116624 Sherman DL, Wu LMN, Grove M, Gillespie CS, Brophy PJ (2012) Drp2 and periaxin form Cajal bands with dystroglycan but have distinct roles in Schwann cell growth. J Neurosci 32(27):9419–9428 Court FA, Sherman DL, Pratt T, Garry EM, Ribchester RR, Cottrell DF, Fleetwood-Walker SM, Brophy PJ (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431(7005):191–195 Raine CS, Bornstein MB (1979) Experimental allergic neuritis. Ultrastructure of serum-induced myelin aberrations in peripheral nervous system cultures. Lab Invest 40(4):423–432 Vital C, Vital A, Bouillot S, Favereaux A, Lagueny A, Ferrer X, Brechenmacher C, Petry KG (2003) Uncompacted myelin lamellae in peripheral nerve biopsy. Ultrastruct Pathol 27(1):1–5 Filbin MT, Walsh FS, Trapp BD, Pizzey JA, Tennekoon GI (1990) Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344(6269):871–872 Yoshikawa H, Dyck PJ (1991) Uncompacted inner myelin lamellae in inherited tendency to pressure palsy. J Neuropathol Exp Neurol 50(5):649–657 Hashimoto R, Koike H, Takahashi M, Ohyama K, Kawagashira Y, Iijima M, Sobue G (2015) Uncompacted myelin lamellae and nodal ion channel disruption in POEMS syndrome. J Neuropathol Exp Neurol 74(12):1127–1136 Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL, Colman DR (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129(1):189–202 Buttermore ED, Thaxton CL, Bhat MA (2013) Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res 91(5):603–622 Tricaud N, Perrin-Tricaud C, Brusés JL, Rutishauser U (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25(13):3259–3269 Kawagashira Y, Koike H, Tomita M, Morozumi S, Iijima M, Nakamura T, Katsuno M, Tanaka F, Sobue G (2010) Morphological progression of myelin abnormalities in IgM-monoclonal gammopathy of undetermined significance anti-myelin-associated glycoprotein neuropathy. J Neuropathol Exp Neurol 69(11):1143–1157. https://doi.org/10.1097/NEN.0b013e3181fa44af Fehmi J, Scherer SS, Willison HJ, Rinaldi S (2018) Nodes, paranodes and neuropathies. J Neurol Neurosurg Psychiatry 89(1):61–71. https://doi.org/10.1136/jnnp-2016-315480 Lonigro A, Devaux JJ (2009) Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 132(Pt 1):260–273. https://doi.org/10.1093/brain/awn281 Stoll G, Li CY, Trapp BD, Griffin JW (1993) Expression of NGF-receptors during immune-mediated and lysolecithin-induced demyelination of the peripheral nervous system. J Neurocytol 22(12):1022–1029 Arroyo EJ, Sirkowski EE, Chitale R, Scherer SS (2004) Acute demyelination disrupts the molecular organization of peripheral nervous system nodes. J Comp Neurol 479(4):424–434. https://doi.org/10.1002/cne.20321 Hall SM, Gregson NA (1971) The in vivo and ultrastructural effects of injection of lysophosphatidyl choline into myelinated peripheral nerve fibres of the adult mouse. J Cell Sci 9(3):769–789 Smith KJ, Hall SM (1988) Peripheral demyelination and remyelination initiated by the calcium-selective ionophore ionomycin: in vivo observations. J Neurol Sci 83(1):37–53 Brannagan TH III (2011) Current diagnosis of CIDP: the need for biomarkers. J Peripher Nerv Syst 16:3–13 Doppler K, Appeltshauser L, Wilhelmi K, Villmann C, Dib-Hajj SD, Waxman SG, Mäurer M, Weishaupt A, Sommer C (2015) Destruction of paranodal architecture in inflammatory neuropathy with anti-contactin-1 autoantibodies. J Neurol Neurosurg Psychiatry 86(7):720–728 Devaux JJ, Miura Y, Fukami Y, Inoue T, Manso C, Belghazi M, Sekiguchi K, Kokubun N, Ichikawa H, Wong AHY (2016) Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. Neurology 86(9):800–807 Koike H, Kadoya M, Kaida K-i, Ikeda S, Kawagashira Y, Iijima M, Kato D, Ogata H, Yamasaki R, Matsukawa N (2017) Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies. J Neurol Neurosurg Psychiatry 88(6):465–473 Querol L, Devaux J, Rojas-Garcia R, Illa I (2017) Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. Nat Rev Neurol 13(9):533 Hafer-Macko CE, Sheikh KA, Li CY, Ho TW, Cornblath DR, McKhann GM, Asbury AK, Griffin JW (1996) Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 39(5):625–635. https://doi.org/10.1002/ana.410390512 Koike H, Ikeda S, Fukami Y, Nishi R, Kawagashira Y, Iijima M, Nakamura T, Kuwahara M, Kusunoki S, Katsuno M, Sobue G (2019) Complement deposition and macrophage-induced demyelination in CIDP with anti-LM1 antibodies. J Neurol Sci 408:116509 Kajii M, Kobayashi F, Kashihara J, Yuuki T, Kubo Y, Nakae T, Kamizono A, Kuzumoto Y, Kusunoki S (2014) Intravenous immunoglobulin preparation attenuates neurological signs in rat experimental autoimmune neuritis with the suppression of macrophage inflammatory protein-1α expression. J Neuroimmunol 266(1–2):43–48