Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hành vi của dầm bê tông cốt sợi polypropylene với cốt thép CFRP dưới nhiệt độ cao
Tóm tắt
Trong bài báo này, hành vi của dầm bê tông được gia cường bằng thanh vật liệu tổng hợp sợi carbon (CFRP) dưới nhiệt độ cao đã được nghiên cứu thông qua mô phỏng số. Mô hình hóa số của dầm bê tông (N-BECS20-2) được gia cường bằng cốt thép CFRP đã dựa trên mô hình thực nghiệm (BECS20-2) được nghiên cứu trước đó. Các dầm này đã được mô phỏng với việc tính đến các gradient nhiệt và phi tuyến vật liệu bằng phần mềm ABAQUS. Để hiểu rõ tác động của bê tông cốt sợi polypropylene (PPFRC) dưới tải trọng cháy, một dầm PPFRC mới với cốt thép CFRP (NPP-BECS20-2) đã được mô phỏng số và được so sánh với hành vi của dầm bê tông thông thường với cốt thép CFRP (N-BECS20-2). Từ các kết quả, khả năng chịu tải và hành vi dẻo của dầm PPFRC với gia cường bằng thanh CFRP dưới nhiệt độ cao được nghiên cứu so sánh. Khả năng chịu tải và khả năng dẻo của dầm PPFRC (NPP-BECS20-2) dưới nhiệt độ cao được phát hiện là cao hơn so với dầm bê tông thông thường (N-BECS20-2). Các nghiên cứu tham số đã được thực hiện bằng cách thay đổi đường kính của cốt thép CFRP và lớp bảo vệ bê tông ở nhiệt độ cao. Việc tăng lớp bảo vệ bê tông lên vài milimét đã bảo vệ cốt thép khỏi sự tiếp xúc với nhiệt, dẫn đến hiệu suất tốt hơn của dầm PPFRC.
Từ khóa
#bê tông cốt sợi polypropylene #CFRP #tải trọng nhiệt #mô phỏng số #khả năng chịu tải #hành vi dẻoTài liệu tham khảo
ABAQUS. (2008). Abaqus analysis user’s manual. Providence: Dassault Systemes Simulia Orp.
Al-Musallam, T., El-Sanadedy, H., Al-Salloum, Y., & Al-Sayed, S. (2013). Experimental and numerical investigation for the flexural strengthening of RC beams using near-surface mounted steel or GFRP bars. Construction and Building Material Journal,40, 145–161.
Bei-xing, L. I., Ming-xiang, C., Fang, C., & Lu-ping, L. (2004). The mechanical properties of polypropylene fiber reinforced concrete. Journal of Wuhan University of Technology—Materials Science Edition,19, 68–71.
Berman, N., & Bank, L. C. (1999). Effect of high temperature on bond strength of FRP rebars. Journal of Composites for Construction,3(2), 73–81.
BS EN 1363-1. (2012). Fire resistance tests—part 1: General requirements. British Standards Institution (BSI).
Chen, B., & Liu, J. (2004). Residual strength of hybrid-fiber reinforced high-strength concrete after exposure to high temperatures. Cement and Concrete Research,34(6), 1065–1069.
Desayi, P., & Krishnan, S. (1964). Equation for the stress–strain curve of concrete. ACI Journal Proceedings,61(3), 1229–1235.
Effect Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal,44(8), 1015–1022.
EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures—part 1-1: General rules and rules for buildings. European Committee for Standardization.
EN 1992-1-2. (2004). Eurocode 2: Design of concrete structures—Part 1-2: General rules—structural fire design
Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures,98, 38–48.
Genikomsou, A., Polak, M. (2016). Damaged plasticity modelling of concrete in finite element analysis of reinforced concrete slabs. In: 9th international conference on fracture mechanics of concrete and concrete structures (p. 214).
Gillie, M., Gillie, A., & Rotter, M. (2001). Modelling of heated composite floor slabs with reference to the cardington experiments. Fire Safety Journal,7, 45–67.
Hillerborg, A. (1978). A model for fracture analysis. (Report TVBM; Vol. 3005). Division of Building Materials, LTH, Lund University.
Iffat, S., & Bose, B. (2016). A review on concrete structures in fire. International Journal of Structural and Construction Engineering,10(2), 123–128.
ISO (International Standards Organization). 1975. Fire resistance tests, elements of building construction (ISO-834), Geneva, 1975 (vol. 25).
Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction Building Materials,27, 73–77.
Karayannis, CG., Kosmidou, P-MK., & Chalioris, CE. (2018). Reinforced concrete beams with carbon-fiber-reinforced polymer bars—experimental study. Fibers, 6(4), 99.
Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural engineering and material,2(4), 429–447.
Khoury, G. A., & Willoughby, B. (2008). Polypropylene fibres in heated concrete Part 1: Molecular structure and materials behaviour. Magazine of Concrete Research,60(2), 125–136.
Kmiecik, P., & Kaminski, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of Civil and Mechanical Engineering,11(3), 623–636.
Lamont, S., Usmani, A. S., & Drysdale, D. D. (2001). Heat transfer analysis of the composite slab in the cardington frame fire tests. Fire Safety Journal,36, 815–839.
Löfgren, I. (2005). Fibre-reinforced concrete for industrial construction—a fracture mechanics approach to material testing and structural analysis, Ph.D. Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Goteborg.
López-Buendía, A. M., Romero-Sánchez, M. D., Climent, V., & Guillem, C. (2013). Surface treated polypropylene (PP) fibres for reinforced concrete. Cement Concrete Research,54, 29–35.
Majewski, S. (2003). Mechanics of structural concrete in terms of elasto-plasticity. Gliwice: University of Technology, Publishing House of Silesian.
Mandell, J. F. (1982). Fatigue behavior of fiber-resin composites, developments in reinforced plastics. Applied Science Publishers,2, 67–107.
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress–strain model for confined concrete. Journal of Structural Engineering,114(8), 1804–1826.
Quayyum, S. (2010). Bond behaviour of fibre reinforced polymer (FRP) rebars in concrete. Master of Applied Science thesis, The University of British Columbia.
Rafi, M. M., & Nadjai, A. (2010a). Experimental behaviour of carbon FRP reinforced concrete beams at ambient and elevated temperatures. Journal of Advanced Concrete Technology,6(3), 431–441.
Rafi, M. M., & Nadjai, A. (2010b). Behavior of hybrid (steel–CFRP) and CFRP bar reinforced concrete beams in fire. Journal of Composite Materials,45, 1–12.
Rafi, M. M., & Nadjai, A. (2011a). Evaluation of thermal resistance of FRP reinforced concrete beams in fire. Journal of Structural Fire Engineering,2, 91–106.
Rafi, M. M., & Nadjai, Ali. (2011b). Fire tests of hybrid and carbon fiber-reinforced polymer bar reinforced concrete beams. ACI Materials Journal,108(3), 252–260.
Rafi, M. M., Nadjai, A., & Ali, F. (2007). Experimental testing of concrete beams reinforced with carbon FRP bars. Journal of Composite Materials, 41(22), 2657–2673.
Rafi, M. M, Nadjai, A, & Ali, F. (2008). finite element modeling of carbon fiber- reinforced polymer reinforced concrete beams under elevated temperatures. ACI Structural Journal, 105(6), 701–710.
Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, physical and mechanical characteristic of concrete for application in sleepers. Construction Building Materials,44, 411–418.
Raza, A., Khan, Q. Z., & Ahmad, A. (2019). Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS. Advances in Civil Engineering,1, 1–21 (Article ID 1745341).
Sakashita, M., Masuda, Y., Nakamura, K., Tanano, H., Nishida, I., & Hashimoto, T. (1997). Deflection of continuous fiber reinforced concrete beams subjected to loaded heating. In Third international symposium on non-metallic (FRP) reinforcement for concrete structures. Tokyo: Japan Concrete Institute (vol. 2, pp. 51–58).
Serrano, R., et al. (2016). Analysis of fire resistance of concrete with polypropylene or steel fibers. Construction and Building Materials,122, 302–309.
Shihada, S. (2011). Effect of polypropylene fibers on concrete fire resistance. Journal of Civil Engineering and Management,17(2), 259–264.
Sideris, K. K., Manita, P., & Chaniotakis, E. (2009). Performance of thermally damaged fibre reinforced concretes. Construction and Building Materials,23(3), 1232–1239.
Tighiouart, B., Benmokrane, B., & Gao, D. (1998). Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars. Construction and Building Materials, 12(8), 453–462.
Wang, H., Zha, X., & Ye, J. (2009). Fire resistance performance of FRP rebar reinforced concrete columns. International Journal of Concrete Structures and Materials,3(2), 111–117.
Xu, M., Yana, L., & Wang, S. (2018a). Experimental Research on Mechanical Properties of SteelUHMWPE Hybrid Fiber Reinforced Concrete, IOP Conf. Series: Materials Science and Engineering, 452.
Xu, L., Li, B., Ding, X., Chi, Y., Li, C., Huang, B., et al. (2018b). Experimental investigation on damage behavior of polypropylene fiber reinforced concrete under compression. International Journal of Concrete Structures and Materials,12, 68–74.
Youssef, M. A., & Moftah, M. (2007). General stress–strain relationship for concrete at elevated temperatures. Engineering Structures,29(10), 2618–2634.
Zeiml, M., Leithner, D., Lackner, R., & Mang, H. A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cement and Concrete Research, 36, 929–942.