Hành vi của cột ống thép được bê tông tái chế dưới tải trọng lệch tâm

Vivian W. Y. Tam1,2, Jianzhuang Xiao1, Sheng Liu1, Zixuan Chen1
1Department of Structural Engineering, Tongji University, Shanghai, China
2School of Computing, Engineering and Mathematics and Institute for Infrastructure Engineering, University of Western Sydney, Penrith, NSW, Australia

Tóm tắt

Bài báo này nghiên cứu hành vi của cột ống thép được bê tông tái chế (RACFST) dưới tải trọng lệch tâm với sự bổ sung các tác nhân giãn nở. Tổng cộng có 16 cột RACFST đã được thử nghiệm trong nghiên cứu này. Các tham số chính thay đổi trong nghiên cứu này là tỷ lệ thay thế cốt liệu thô tái chế (0%, 30%, 50%, 70%, và 100%), liều lượng tác nhân giãn nở (0%, 8%, và 15%) và khoảng cách lệch của tải trọng nén từ tâm cột (0 và 40 mm). Kết quả thực nghiệm cho thấy ứng suất tối đa của các cột RACFST giảm khi tỷ lệ thay thế cốt liệu thô tái chế tăng, nhưng liều lượng tác nhân giãn nở hợp lý có thể giảm sự suy giảm này; việc bổ sung tác nhân giãn nở làm giảm ứng suất tối đa của các cột RACFST, nhưng một liều lượng hợp lý có thể tăng cường khả năng biến dạng. Tỷ lệ thay thế cốt liệu thô tái chế có ảnh hưởng hạn chế đến ứng suất tối đa của các cột RACFST và có tác động lớn hơn so với cột ống thép được bê tông thông thường.

Từ khóa

#cột ống thép #bê tông tái chế #cốt liệu thô tái chế #tải trọng lệch tâm #tác nhân giãn nở

Tài liệu tham khảo

Malhotra V M. Use of recycled aggregate concrete as a new aggregate. Ottawa, Canada, 1976 Buck A D. Recycled aggregate concrete as a source of aggregate. ACI Journal, 1977, 74: 212–219 Sri Ravindrarajah R S, Tam C T. Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 1985, 37(130): 29–38 Hansen T C. Recycled aggregate and recycled aggregate concrete second state-of-the-art report-development from 1945–1985. Materials and Structures, 1986, 19(3): 201–246 Kevin A P, David J C, Ravindra K D. Strength and deformation characteristics of concrete containing coarse recycled and manufactured aggregates. In: 11th International Conference on Non-Conventional Materials and Technologies, Bath, UK, 2009 Hao T, Du Z H, Liu L X. Study on complete stress–strain curves of recycled concrete. In: Xiao J Z, Zhang Y, Chu Re P K, eds. Proceeding of 2nd International Conference on Waste Engineering and Management. Shanghai, China, 2010, 506–512 Hansen T C, Boegh E. Elasticity and drying shrinkage of recycled aggregate concrete. ACI Journal Proceedings, 1985, 82: 648–652 Ajdukiewicz A, Kliszczewicz A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 2002, 24(2): 269–279 Otsuki N, Miyazato S, Yodsudjai W. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 2003, 15(5): 443–451 Xiao J Z, Li J, Zhang C. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 2005, 35(6): 1187–1194 Terrey P J, Bradford M A, Gilbert R I. Creep and shrinkage in concrete filled steel tubes. In: Proceeding of the 6th International Symposium on Tubular Structures, Melbourne, Australia, 1994, 293–298 Nakai H, Kurita A, Ichinose L H. An experimental study on creep of concrete filled steel pipes. In: Proceeding of the 3rd International Conference on Steel–Concrete Composite Structures, Fukuoka, Japan, 1991, 55–60 Ichinose L H, Watanabe E, Nakai H. An experimental study on creep of concrete filled steel pipes. Journal of Constructional Steel Research, 2001, 57(4): 453–466 Han L H, Yang Y F, Tao Z. Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading. Thin-walled Structures, 2003, 41(9): 801–833 Fam A, Qie F S, Rizkalla S. Concrete filled steel tubes subjected to axial compression and lateral cyclic loads. Journal of Structural Engineering, 2004, 130(4): 631–640 Yang Y F, Han L H. Compressive and flexural behavior of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings. Steel and Composite Structures, 2006, 6(3): 257–284 Yang Y F, Han L H. Experimental behavior of recycled aggregate concrete filled steel tubular columns. Journal of Constructional Steel Research, 2006, 62(12): 1310–1324 Yang Y F, Han L H, Wu X. Concrete shrinkage and creep in recycled aggregate concrete-filled steel tubes. Advances in Structural Engineering, 2008, 11(4): 383–396 Yang Y F. Behavior of recycled aggregate concrete-filled steel tubular columns under long-term sustained loads. Advances in Structural Engineering, 2011, 14(2): 189–206 Yang Y F, Zhu L T. Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading. Steel and Composite Structures, 2009, 9(1): 19–38 Yang Y F, Han L H, Zhu L T. Experimental performance of recycled aggregate concrete-filled circular steel tubular columns subjected to cyclic flexural loadings. Advances in Structural Engineering, 2009, 12(2): 183–194 Xiao J Z, Huang Y, Yang J, Zhang C. Mechanical properties of confined recycled aggregate concrete under axial compression. Construction & Building Materials, 2012, 26(1): 591–603 Huang Y, Xiao J Z, Zhang C. Theoretical study on mechanical behavior of steel confined recycled aggregate concrete. Journal of Constructional Steel Research, 2012, 76: 100–111 Chen Z P, Chen X H, Ke X J, Xue J Y. Experimental study on the mechanical behavior of recycled aggregate coarse concrete-filled square steel tube column. In: Proceedings of the International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010, 1313–1316 Chen Z P, Liu F, Zheng H H, Xue J Y. Research on bearing capacity of recycled aggregate concrete-filled circle steel tube column under axial compression loading. In: Proceedings of the International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010, 1198–1201 Mohanraj E K, Kandasamy S, Malathy R. Behaviour of steel tubular stub and slender columns filled with concrete using recycled aggregates. Journal of the South African Institution of Civil Engineering, 2011, 53: 31–38 Maltese C, Pistolesi C, Lolli A, Bravo A, Cerulli T, Salvioni D. Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars. Cement and Concrete Research, 2005, 35(12): 2244–2251 Meddah M S, Szuki M, Sato R. Combined effect of shrinkage reducing and expansive agents on autogenous deformations of highperformance concrete. In: The 3rd ACF international conference-ACF/VCA, 2008, 339–346 Pistolesi C, Maltese C, Bovassi M. Low shrinking self-compacting concrete for concrete repair. In: Alexander M G, Beushausen H D, Dehn F, Moyo P, eds. Concrete Repair, Rehabilitation and Retrofitting II. CRC Press, 2008, 871–876 Meddah M S, Suzuki M, Sato R. Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete. Construction & Building Materials, 2011, 25(1): 239–250 José Oliveira M, Ribeiro A B, Branco F G. Combined effect of expansive and shrinkage reducing admixtures to control autogenous shrinkage in self-compacting concrete. Construction & Building Materials, 2014, 52: 267–275 Li M, Liu J, Tian Q, Wang Y, Xu W. Efficacy of internal curing combined with expansive agent in mitigating shrinkage deformation of concrete under variable temperature condition. Construction & Building Materials, 2017, 145(8): 354–360 García Calvo J L, Revuelta D, Carbalose P, Gutiérrez J P. Comparison between the performance of expansive SCC and expansive conventional concretes in different expansion and curing conditions. Construction & Building Materials, 2017, 136: 277–285 Tam V W Y, Kotrayothar D, Xiao J Z. Long-term deformation behavior of recycled aggregate concrete. Construction & Building Materials, 2015, 100: 262–272 Souche J C, Devillers P, Salgues M, Garcia Diaz E. Influence of recycled coarse aggregates on permeability of fresh concrete. Cement and Concrete Composites, 2017, 83: 394–404 Geng Y, Wang Y, Chen J. Creep behavior of concrete using recycled coarse aggregates obtained from source concrete with different strengths. Construction & Building Materials, 2016, 128: 199–213