Behavioral and antioxidant activity of a tosylbenz[g]indolamine derivative. A proposed better profile for a potential antipsychotic agent

Chara A Zika1, Ioannis Nicolaou1, Antonis Gavalas1, George V Rekatas1, Ekaterini Tani1, Vassilis J Demopoulos1
1Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece

Tóm tắt

Tardive dyskinesia (TD) is a major limitation of older antipsychotics. Newer antipsychotics have various other side effects such as weight gain, hyperglycemia, etc. In a previous study we have shown that an indolamine molecule expresses a moderate binding affinity at the dopamine D2 and serotonin 5-HT1A receptors in in vitro competition binding assays. In the present work, we tested its p-toluenesulfonyl derivative (TPBIA) for behavioral effects in rats, related to interactions with central dopamine receptors and its antioxidant activity. Adult male Fischer-344 rats grouped as: i) Untreated rats: TPBIA was administered i.p. in various doses ii) Apomorphine-treated rats: were treated with apomorphine (1 mg kg-1, i.p.) 10 min after the administration of TPBIA. Afterwards the rats were placed individually in the activity cage and their motor behaviour was recorded for the next 30 min The antioxidant potential of TPBIA was investigated in the model of in vitro non enzymatic lipid peroxidation. i) In non-pretreated rats, TPBIA reduces the activity by 39 and 82% respectively, ii) In apomorphine pretreated rats, TPBIA reverses the hyperactivity and stereotype behaviour induced by apomorphine. Also TPBIA completely inhibits the peroxidation of rat liver microsome preparations at concentrations of 0.5, 0.25 and 0.1 mM. TPBIA exerts dopamine antagonistic activity in the central nervous system. In addition, its antioxidant effect is a desirable property, since TD has been partially attributed, to oxidative stress. Further research is needed to test whether TPBIA may be used as an antipsychotic agent.

Từ khóa


Tài liệu tham khảo

Bloom F, Kupfer D, et al: Psychopharmacology. In: The fourth generation of progress. 1994, New York: Raven Press, 1497-1498.

Kane JM, Woerner M, Weinhold P, Wegner J, Kinon B, Borenstein M: Incidence of Tardive Dyskinesia: Five Year Data from a Prospective Study. Psychopharmacol Bull. 1984, 20: 39-40.

Saltz BL, Woerner M, Kane JM, et al: Prospective study of tardive dyskinesia incidence in the elderly. JAMA. 1991, 266: 2402-2406. 10.1001/jama.266.17.2402.

Waddington JL: Schizophrenia, affective psychosis and other disorders treated with neuroleptic drugs: the enigma of tardive dyskinesia, its neurobiological determinants and the conflict of paradigms. Int Rev Neurobiol. 1989, 31: 297-353.

Waddington JL, Youssef HA: The lifetime outcome and involuntary movements of schizophrenia never treated with neuroleptic drugs. Br J Psychiatry. 1990, 156: 106-108.

Adler LA, Edson R, Lavori P, Peselow E, Duncan E, Rosenthal M, Rostrosen J: Long-term treatment effects of vitamin E for tardive dyskinesia. Biol Psych. 1998, 43 (12): 868-872. 10.1016/S0006-3223(97)00027-9.

Cadet JL, Lohr JB, Jeste DV: Free Radicals and Tardive Dyskinesia. Trends Neurosci. 1986, 9: 107-108. 10.1016/0166-2236(86)90035-4.

Lohr JB, Cadet JL, Lohr MA, et al: Vitamin E in the treatment of Tardive Dyskinesia. The possible involvement of free Radical Mechanisms. Schizophrenia Bull. 1988, 14 (2): 291-296.

Lohr JB: Oxygen Radicals and Neuropsychiatric Ilness, Some speculations. Arch Gen Psychiatry. 1991, 48 (12): 1097-1106.

McCreadie RG, MacDonald E, Wiles D, et al: The Nithsdale Schizophrenia Surveys. XIV: Plasma lipid peroxide and serum vitamin E levels in patients with and without tardive dyskinesia, and in normal subjects. Br J Psychiatry. 1995, 167 (5): 610-617.

Adler LA, Peselow E, Rotrosen J, et al: Vitamine E treatment of Tardive Dyskinesia. Am J Psychiat. 1993, 150 (9): 1405-1407.

Lohr JB, Caligiuri MP: A double-blind placebo-controlled study of vitamin E treatment of tardive dyskinesia. J Clin Psychiatry. 1996, 57 (4): 167-173.

Shriqui CL, Bradwejn J, Annable L, et al: Vitamin E in the treatment of tardive dyskinesia: a double-blind placebo-controlled study. Am J Psychiatry. 1992, 149: 391-393.

Bandelow B, Meier A: Aripiprazole, a "Dopamine-Serotonin System Stabilizer" in the treatment of Psychosis. Reprinted from the German Journal of Psychiatry. ISSN 1433-1055, [http://www.gipsy.uni-goettingen.de]

Demopoulos VJ, Gavalas A, Rekatas G, Tani Ek: Activity on the cns andantioxidant profile of two benzo[g]indolamine derivatives. Med Chem Res. 1999, 9 (1): 9-18.

Albert A: Selective Toxicity, The physico-chemical basis of therapy. 1985, New York: Chapman and Hall, 294-7

Gerlach M, Riederer P, Youdim MBH: Neuroprotective Therapeutic Strategies-Comparison of experimental and Clinical Results. Biochem Pharmacol. 1995, 50 (1): 1-16. 10.1016/0006-2952(95)00051-Z.

Demopoulos VJ, Gavalas A, Rekatas G, Tani Ek: Synthesis of 6,7,8,9-Tetrahydro-N,N-Fi-Propyl-1H-Benz[g]indol-7-amine. A Potential Dopamine Receptor Agonist. J Heterocyclic Chem. 1995, 32: 1145-1148.

Rekka E, Kolstee J, Timmerman H, Bast A: The effect of some H-2-receptor Antagonists on rat Hepatic Microsomal cytochrome P-450 and lipid Peroxidation in vitro. Eur J Med Chem. 1989, 24 (1): 43-47.

ClogP Version 4.72. Daylight Chemical Information Systems Inc. [http://www.daylight.com/]

Demopoulos VJ, Anagnostou C, Nicolaou I: Validation of a computational procedure for the calculation of the polar surface area (PSA) of organic compounds. Pharmazie. 2002, 57 (9): 652-653.

Clark DE: Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci. 1999, 88 (8): 815-821. 10.1021/js980402t.

Clark DE: Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci. 1999, 88 (8): 808-814.

SPARTAN SGI Version 5.1.3 OpenGL, Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612 U.S.A. [Method: RHF/6-311G** on a low energy conformer generated from a Monte Carlo search]

Jackson-Lewis V, et al: Partial Attenuation of Chronic Fluphenazine-induced Changes in Regional Monoamine Metabolism by D-Alpha-Tocopherol in Rat-brain. Brain Res Bull. 1991, 26 (2): 251-258. 10.1016/0361-9230(91)90235-C.

Vatassery GT, et al: Concentrations of Vitamin E in various Neuroanatomical Regions and Subcellular Fractions, and The Uptake of Vitamin E by specific Areas of Rat Brain. Biochim Biophys Acta. 1984, 792: 118-122. 10.1016/0005-2760(84)90211-X.