Behavioral Estimates of the Contribution of Inner and Outer Hair Cell Dysfunction to Individualized Audiometric Loss

Journal of the Association for Research in Otolaryngology - Tập 13 Số 4 - Trang 485-504 - 2012
Enrique A. Lopez‐Poveda1, Peter T. Johannesen1
1Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León IBSAL, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

ANSI (2004). Specification for audiometers. ANSI S3.6-2004. ANSI, New York

Bondy J, Becker S, Bruce I, Trainor L, Haykin S (2004) A novel signal-processing strategy for hearing-aid design: neurocompensation. Signal Process 84:1239–1253

Bruce IC, Sachs M, Young ED (2003) An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. J Acoust Soc Am 113:369–388

Glasberg BR, Moore BCJ (1992) Effects of envelope fluctuations on gap detection. Hear Res 64:81–92

Heinz MG, Young ED (2004) Response growth with sound level in auditory-nerve fibres after noise induced hearing loss. J Neurophysiol 91:784–795

Heinz MG, Issa JB, Young ED (2005) Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J Assoc Res Otolaryngol 6:91–105

Jepsen ML, Dau T (2011) Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss. J Acoust Soc Am 129:262–281

Johannesen PT, Lopez-Poveda EA (2008) Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. J Acoust Soc Am 124:2149–2163

Johannesen PT, Lopez-Poveda EA (2010) Correspondence between behavioral and individually ‘optimized’ otoacoustic emission estimates of human cochlear input/output curves. J Acoust Soc Am 127:3602–3613

Johansson MS, Arlinger SD (2003) Prevalence of hearing impairment in a population in Sweden. Int J Audiol 42:18–28

Jürgens T, Kollmeier B, Brand T, Ewert SD (2011) Assessment of auditory nonlinearity for listeners with different hearing losses using temporal masking and categorical loudness scaling. Hear Res 280:177–191

Kochkin S (2001) MarkeTrak VI: The VA and direct mail sales spark growth in hearing aid market. Hear Rev 8:16–24

Levitt H (1971) Transformed up–down methods in psychoacoustics. J Acoust Soc Am 49:466–477

Liberman MC, Dodds LW (1984) Single-neuron labelling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

Liberman MC, Mulroy MJ (1982) Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 105–135

Liberman MC, Dodds LW, Learson DA (1986) Structure-function correlation in noise damaged ears: a light and electronmicroscopy study. In: Salvi RJ, Henderson D, Hamernik RP, Colleti V (eds) Basic and applied aspects of noise induced hearing loss. Plenum, New York, pp 163–177

Lopez-Poveda EA, Alves-Pinto A (2008) A variant temporal masking-curve method for inferring peripheral auditory compression. J Acoust Soc Am 123:1544–1554

Lopez-Poveda EA, Johannesen PT (2009) Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent. J Assoc Res Otolaryngol 10:511–523

Lopez-Poveda EA, Plack CJ, Meddis R (2003) Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. J Acoust Soc Am 113:951–960

Lopez-Poveda EA, Plack CJ, Meddis R, Blanco JL (2005) Cochlear compression in listeners with moderate sensorineural hearing loss. Hear Res 205:172–183

Lopez-Poveda EA, Johannesen PT, Merchán MA (2009) Estimation of the degree of inner and outer hair cell dysfunction from distortion-product otoacoustic emission input/output functions. Audiolog Med 7:22–28

Marozeau J, Florentine M (2007) Loudness growth in individual listeners with hearing losses: a review. J Acoust Soc Am 122:EL81–EL87

McGill TJ, Schuknecht HF (1976) Human cochlear changes in noise induced hearing loss. Laryngoscope 86:1293–1302

Meddis R, O’Mard LP (2005) A computer model of the auditory-nerve response to forward-masking stimuli. J Acoust Soc Am 2117:3787–3798

Mills DM (2006) Determining the cause of hearing loss: differential diagnosis using a comparison of auditometric and otoacoustic emission responses. Ear Hear 27:508–525

Møller AR (2000) Hearing. Its physiology and pathophysiology. Academic, San Diego, pp 409–415

Moore BCJ (2007) Cochlear hearing loss. Physiological, psychological and technical issues, 2nd edn. Wiley, Chichester, pp 104–109

Moore BCJ, Glasberg BR (1997) A model of loudness perception applied to cochlear hearing loss. Aud Neurosci 3:289–311

Moore BCJ, Glasberg BR (2004) A revised model of loudness perception applied to cochlear hearing loss. Hear Res 188:70–88

Moore BCJ, Alcántara JI, Stone MA, Glasberg BR (1999) Use of a loudness model for hearing aid fitting: II. Hearing aids with multi-channel compression. Br J Audiol 33:157–170

Nelson DA, Schroder AC, Wojtczak M (2001) A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 110:2045–2064

Plack CJ, Drga V (2003) Psychophysical evidence for auditory compression at low characteristic frequencies. J Acoust Soc Am 113:1574–1586

Plack CJ, Drga V, Lopez-Poveda EA (2004) Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss. J Acoust Soc Am 115:1684–1695

Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591

Rhode WS (2007) Distortion product otoacoustic emissions and basilar membrane vibration in the 6–9 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 122:2725–2737

Rhode WS, Cooper NP (1996) Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Aud Neurosci 3:101–121

Robles L, Ruggero MA. (2001). Mechanics of the mammalian cochlea. Physiol. Rev. 81:1305–1352

Rosengard PS, Oxenham AJ, Braida LD (2005) Comparing different estimates of cochlear compression in listeners with normal and impaired hearing. J Acoust Soc Am 117:3028–3041

Ruggero MA, Rich NC, Recio A (1996) The effect of intense acoustic stimulation on basilar-membrane vibrations. Aud Neurosci 2:329–345

Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163

Scheidt RE, Kale S, Heinz MG (2010) Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses. Hear Res 269:23–33

Schmiedt RA (1996) Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea. Hear Res 102:125–132

Stainsby TH, Moore BCJ (2006) Temporal masking curves for hearing-impaired listeners. Hear Res 218:98–111

Trautwein P, Hofstetter P, Wang J, Salvi R, Nostrant A (1996) Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res 96:71–82

Wojtczak M, Oxenham AJ (2010) Pitfalls in behavioral estimates of basilar-membrane compression in humans. J Acoust Soc Am 125:270–281

Wright A, Davis A, Bredberg G, Ulehlova L, Spencer H (1987) Hair cell distribution in the normal human cochlea. Acta Otolaryngol Suppl 444:1–48