Beauty and the beast: Superconformal symmetry in a monster module

Lance J. Dixon1, Paul Ginsparg2, Jeffrey A. Harvey1
1Physics Department, Princeton University, Princeton, USA
2Lyman Laboratory of Physics, Harvard University, Cambridge, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Frenkel, I. B., Lepowsky, J., Meurman, A.: A natural representation of the Fischer-Griess monster with the modular functionJ as character. Proc. Natl. Acad. Sci. U.S.A.81, 32566 (1984); Frenkel, I. B., Lepowsky, J., Meurman, A.: A moonshine module for the monster. In: Vertex operators in mathematics and physics. Lepowsky, J., Mandelstam, S., Singer, I (eds.). Publ. Math. Sciences Res. Inst. Vol. 3, p. 231. Berlin, Heidelberg, New York: Springer 1985; Frenkel, I. B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. New York: Academic Press (to appear)

Conway, J. H., Norton, S. P.: Monstrous moonshine. Bull. Lond. Math. Soc.11, 308 (1979)

Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys.B241, 333 (1984); Friedan, D.: Notes on string theory and two dimensional conformal field theory. In: Unified string theories. Green, M., Gross, D. (eds.). Singapore: World Scientific 1986; Peskin, M.: Introduction to string and superstring theory II. 1986 TASI lectures, SLAC-PUB-4251; Banks, T.: Lectures on conformal field theory. 1987 TASI lectures, SCIPP 87/111

Friedan, D., Qiu, Z., Shenker, S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett.52, 1575 (1984)

Cardy, J.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys.B270[FS16], 186 (1986)

Moore, G.: private communication

Gliozzi, F., Scherk, J., Olive, D.: Supersymmetry, supergravity theories and the dual spinor model. Nucl. Phys.B122, 253 (1977); Friedan, D., Qiu, Z., Shenker, S.: Superconformal invariance in two dimensions and the tricritical Ising model. Phys. Lett.151B, 37 (1985)

Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys.B202, 253 (1982)

Kastor, D.: Modular invariance in superconformal models. Nucl. Phys.B280[FS18] 304 (1987)

Dixon, L., Ginsparg, P., Harvey, J.:?=1 superconformal field theory. Nucl. Phys.B306, 470 (1988)

Narain, K. S., Sarmadi, M. H., Witten, E.: A note on toroidal compactification of heterotic string theory. Nucl. Phys.B279 369 (1986); Ginsparg, P.: On toroidal compactification of heterotic superstrings. Phys. Rev.D35, 648 (1987)

Frenkel, I. B., Kac, V. G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math.62, 23 (1980); Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys.81, 301 (1981)

Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds I, II. Nucl. Phys.B261, 678 (1985); Nucl. Phys.B274 285 (1986)

Vafa, C.: Modular invariance and discrete torsion on orbifolds. Nucl. Phys.B273, 592 (1986)

Lepowsky, J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA82, 8295 (1985)

Narain, K. S., Sarmadi, M. H., Vafa, C.: Asymmetric orbifolds. Nucl. Phys.B288, 551 (1987)

Corrigan, E., Hollowood, T.: Comments on the algebra of straight, twisted, and intertwining vertex operators. Nucl. Phys.B304, 77 (1988)

Tits, J.: Normalisateurs de tores 1. Groups de Coxeter �tendus. J. Alg.4, 96 (1966)

Griess, R. L., Jr.,: The friendly giant. Invent. Math.69, 1 (1982); Tits, J.: On R. Griess' ?Friendly Giant?. Invent. Math.78, 491 (1984)

Conway, J. H., Sloane, N. J. A.: Twenty-three constructions for the Leech lattice. Proc. Roy. Soc. Lond. Ser.A381, 275 (1982)

Dixon, L., Friedan, D., Martinec, E., Shenker, S.: The conformal field theory of orbifolds. Nucl. Phys.B282, 13 (1987); Hamidi, S., Vafa, C.: Interactions on orbifolds. Nucl. Phys.B279, 465 (1987)

Mason G. (with an appendix by Norton, S.P.),: Finite groups and modular functions. Proc. Symposia in Pure Math.47, 181 (1987)

Moore, G.: Atkin-Lehner symmetry. Nucl. Phys.B293 139 (1987). Erratum ibid.B299, 847 (1988)

Ogg, A.: Hyperelliptic modular curves. Bull. Soc. Math. France102, 449 (1974)