Beautiful Gini
Tóm tắt
You may very well be familiar with the Gini Coefficient, also known as the Gini index: a quantitative gauge with which socioeconomic inequality is measured, e.g. income disparity and wealth disparity. However, you may not know that the Gini Coefficient is an exquisite mathematical object. Enter this review paper—whose aim is to showcase (some of) the mathematical beauty and riches of the Gini Coefficient. The paper does so, in a completely self-contained manner, by illuminating the Gini Coefficient from various perspectives: Euclidean geometry vs. grid geometry; maxima and minima of random variables; statistical distribution functions; the residual lifetime and the total lifetime of renewal processes; increasing and decreasing failure rates; socioeconomic divergence from perfect equality; and weighted differences of statistical distribution functions. Together, these different perspectives offer a deep and comprehensive understanding of the Gini Coefficient. In turn, a profound understanding of the Gini Coefficient may lead to novel ‘Gini applications’ in science and engineering—such as recently established in the multidisciplinary field of restart research.
Từ khóa
Tài liệu tham khảo
Giorgi, G.M., Gubbiotti, S.: Celebrating the memory of Corrado Gini: a personality out of the ordinary. Int. Stat. Rev. 85(2), 325–339 (2017)
Gini, C.: Sulla misura della concentrazione e della variabilita dei caratteri. Atti del Reale Istituto veneto di scienze lettere ed arti 73, 1203–1248 (1914)
Giorgi, G.M., Chiara, G.: The Gini concentration index: a review of the inference literature. J. Econ. Surv. 31(4), 1130–1148 (2017)
Giorgi, G.M.: Gini Coefficient. In: SAGE Research Methods Foundations, edited by Paul Atkinson, Sara Delamont, AlexandruCernat, Joseph W. Sakshaug, and Richard A. Williams. SAGE Publications (2020). https://doi.org/10.4135/9781526421036883328
Eliazar, I., Giorgi, G.M.: From Gini to Bonferroni to Tsallis: an inequality-indices trek. Metron 78(2), 119–153 (2020)
Tu, J., Sui, H., Feng, W., Sun, K., Chuan, X., Han, Qinhu: Detecting building facade damage from oblique aerial images using local symmetry feature and the Gini index. Remote Sens. Lett. 8(7), 676–685 (2017)
O’Hagan, S., Marina W.M., Philip J. D., Emma L., Douglas B. K.: GeneGini: assessment via the Gini coefficient of reference “housekeeping” genes and diverse human transporter expression profiles. Cell Syst. 6(2), 230-244 (2018)
Hasisi, B., Simon P., Yonatan I., Michael W.: Concentrated and close to home: the spatial clustering and distance decay of lone terrorist vehicular attacks. J. Quant. Criminol.: 1-39 (2019)
Horcher, D., Daniel J. G.: The Gini index of demand imbalances in public transport. Transportation 1-24 (2020)
Lechthaler, B., Pauly, C., Mucklich, F.: Objective homogeneity quantification of a periodic surface using the Gini coefficient. Sci. Rep. 10(1), 1–17 (2020)
Pernot, P., Savin, A.: Using the Gini coefficient to characterize the shape of computational chemistry error distributions. Theor. Chem. Accounts 140(3), 1–11 (2021)
Arbel, Y., Fialkoff, C., Kerner, A., Kerner, M.: Do population density, socio-economic ranking and Gini Index of cities influence infection rates from coronavirus? Israel as a case study. Ann. Reg. Sci. 68(1), 181–206 (2022)
Karmakar, A., Partha S.B., Debashis D., Sourav B., Pritam G.: MedGini: Gini index based sustainable health monitoring system using dew computing. Med. Novel Technol. Dev., 100145 (2022)
Ben-Naim, Arieh: A Farewell to Entropy: Statistical Thermodynamics Based on Informatio. World Scientific (2008)
Magurran, A.E.: Ecological Diversity and Its Measurement. Princeton University Press, Princeton (1988)
Legendre, P., Legendre, L.: Numerical Ecology. Elsevier (2012)
Evans, M.R., Majumdar, S.N.: Diffusion with stochastic resetting. Phys. Rev. Lett. 106(16), 160601 (2011)
Reuveni, Shlomi: Optimal stochastic restart renders fluctuations in first passage times universal. Phys. Rev. Lett. 116(17), 170601 (2016)
Chechkin, A., Sokolov, I.M.: Random search with resetting: a unified renewal approach. Phys. Rev. Lett. 121(5), 050601 (2018)
Pal, A., Eliazar, I., Reuveni, S.: First passage under restart with branching. Phys. Rev. Lett. 122(2), 020602 (2019)
Tal-Friedman, O., Pal, A., Sekhon, A., Reuveni, S., Roichman, Y.: Experimental realization of diffusion with stochastic resetting. J. Phys. Chem. Lett. 11(17), 7350–7355 (2020)
De Bruyne, B., Randon-Furling, J., Redner, S.: Optimization in first-passage resetting. Phys. Rev. Lett. 125(5), 050602 (2020)
De Bruyne, B., Randon-Furling, J., Redner, S.: Optimization and growth in first-passage resetting. J. Stat. Mech. Theory Exp. 2021(1), 013203 (2021)
Eliazar, I., Reuveni, S.: Tail-behavior roadmap for sharp restart. J. Phys. A: Math. Theor. 54(12), 125001 (2021)
Evans, M.R., Majumdar, S.N., Schehr, G.: Stochastic resetting and applications. J. Phys. A Math. Theor. 53(19), 193001 (2020)
Pal, A., Kostinski, S., Reuveni, S.: The inspection paradox in stochastic resetting. J. Phys. A: Math. Theor. 55(2), 021001 (2022)
Reuveni, S., Kundu, A.: Preface: stochastic resetting—theory and applications. J. Phys. A: Math. Theor. 57, 060301 (2024). (This is the preface to a special issue on restart research)
Eliazar, I., Reuveni, S.: Mean-performance of sharp restart I: statistical roadmap. J. Phys. A Math. Theor. 53(40), 405004 (2020)
Eliazar, I., Reuveni, S.: Mean-performance of Sharp Restart II: inequality roadmap. J. Phys. A Math. Theor. 54, 355001 (2021)
Jeon, J.-H., Leijnse, N., Oddershede, L.B., Metzler, R.: Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys. 15(4), 045011 (2013)
Sikora, G., Burnecki, K., Wylomanska, A.: Mean-squared-displacement statistical test for fractional Brownian motion. Phys. Rev. E 95(3), 032110 (2017)
Bothe, M., Sagues, F., Sokolov, I.M.: Mean squared displacement in a generalized Levy walk model. Phys. Rev. E 100(1), 012117 (2019)
Sharpe, William F.: Mean-absolute-deviation characteristic lines for securities and portfolios. Manag. Sci. 18(2), B-1 (1971)
Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. Sci. 37(5), 519–531 (1991)
Konno, H., Koshizuka, T.: Mean-absolute deviation model. Lie Trans. 37(10), 893–900 (2005)
Yitzhaki, S.: More than a dozen alternative ways of spelling Gini. Res. Econ. Inequal. 8, 13–30 (1998)
Yitzhaki, S.: Gini’s mean difference: a superior measure of variability for non-normal distributions. Metron 61(2), 285–316 (2003)
Yitzhaki, S., Lambert, P.J.: The relationship between the absolute deviation from a quantile and Gini’s mean difference. Metron 71(2), 97–104 (2013)
Galambos, J.: The Asymptotic Theory of Extreme Order Statistics. No. 04; QA274, G3. (1978)
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.L.: Statistics of Extremes: Theory and Applications. Wiley (2006)
Reiss, R.-D., Thomas, M.: Statistical Analysis of Extreme Values, vol. 2. Birkhauser, Basel (2007)
Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2004)
Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)
Clauset, A., Cosma, R.S., Mark, E.J.N.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)
Arnold, B.C.: Pareto Distributions. Routledge (2020)
Smith, W.L.: Renewal theory and its ramifications. J. R. Stat. Soc. Ser. B (Methodol.) 20(2), 243–284 (1958)
Cox, D.R. Renewal Theory. Methuen (1962)
Ross, S.M.: Applied Probability Models with Optimization Applications. Courier Corporation (2013)
Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, vol. 360. Wiley (2011)
Kleinbaum, D.G., Klein, M.: Survival Analysis. Springer, Berlin (2011)
Finkelstein, M.: Failure Rate Modelling for Reliability and Risk. Springer (2008)
Dhillon, B.S.: Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach. CRC Press (2017)
Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)
Phillips, J.C.: Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 59(9), 1133 (1996)
Kalmykov, Y.P., Coffey, W.T., Rice, S.A. (eds.): Fractals, Diffusion, and Relaxation in Disordered Complex Systems. Wiley (2006)
Murthy, D.N.P., Min X., Renyan J.: Weibull Models. Vol. 505. Wiley (2004)
McCool, J.I.: Using the Weibull Distribution: Reliability, Modeling, and Inference. Vol. 950. Wiley (2012)
Lorenz, M.O.: Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 9(70), 209–219 (1905)
Gastwirth, J.L.: A General Definition of the Lorenz Curve. Econom. J. Econom. Soc., 1037-1039 (1971)
Chotikapanich, D. (ed.): Modeling Income Distributions and Lorenz Curves. Springer, Berlin (2008)