Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khả Năng Chịu Tải của Móng Vuông Mô Hình Trên Đất Tầng Nâng Có Gia Cường Bằng Vật Liệu Geocomposite
Springer Science and Business Media LLC - Trang 1-20 - 2023
Tóm tắt
Nỗ lực trên toàn cầu nhằm giảm thiểu ô nhiễm môi trường hiện nay đang trở nên vô cùng khắc nghiệt. Do đó, sự gia tăng sự cảnh giác đối với môi trường bền vững đã hạn chế việc sử dụng các vật liệu có thể có tác động lớn đến ô nhiễm môi trường. Vật liệu geosynthetic là một loại vật liệu hiệu quả về chi phí và chống ăn mòn, có thể được sử dụng trong các điều kiện tiếp xúc nhiều để giảm thiểu sự lún quá mức dự kiến trong trường hợp đất mềm. Nghiên cứu hiện tại đã điều tra hành vi của vật liệu geocomposite trong hệ thống đất có lớp. Ba loại geocomposite đã được sản xuất bằng cách thay đổi độ cứng kéo của các thành phần, đó là GCBX-40, GC-BX-60, và GC-BX80. Cấu hình cơ bản của mỗi geocomposite là giống nhau và được tạo ra bằng cách đặt một lớp geotextile giữa hai lớp geogrid, điều này đã làm tăng đáng kể độ ma sát bề mặt do tỷ lệ bề mặt che phủ tăng lên cũng như cải thiện hiệu ứng liên kết giữa các hạt đất nhờ vào các lớp geogrid ở cả hai bên. Nghiên cứu đã giới thiệu nhiều dạng bố trí khác nhau của geocomposite ngoài bố trí phẳng tổng quát và phát hiện rằng hiệu ứng giam giữ đã tăng lên trong các lớp đất. Do đó, độ kết dính (c) giữa các hạt đất và góc ma sát (ϕ) đã được điều chỉnh do tăng cường hiệu ứng giam giữ này, không chỉ cải thiện yếu tố khả năng chịu tải mà còn cải thiện yếu tố giảm lún. Kết quả cho thấy khả năng chịu tải đã được cải thiện từ 33,8% lên 40,59% khi sử dụng các loại geocomposite khác nhau.
Từ khóa
#geosynthetic #geocomposite #đất mềm #khả năng chịu tải #lún đất #hiệu ứng giam giữTài liệu tham khảo
Abdi-Goudarzi S, Ziaie-Moayed R, Nazeri A (2022) An experimental evaluation of geocomposite-reinforced soil sections. Constr Build Mater 314:125566. https://doi.org/10.1016/j.conbuildmat.2021.125566
Abu-Farsakh M, Chen Q, Sharma R, Zhang X (2008) Large-scale model footing tests on geogrid-reinforced foundation and marginal embankment soils. Geotech Test J 31(5):413–423. https://doi.org/10.1520/gtj101465
Abu-Farsakh M, Souci G, Voyiadjis GZ, Chen Q (2012) Evaluation of factors affecting the performance of geogrid-reinforced granular base material using repeated load triaxial tests. J Mater Civ Eng 24(1):72–83. https://doi.org/10.1061/(asce)mt.1943-5533.0000349
Ahmed MR, Tran VDH, Meguid MA (2015) On the role of geogrid reinforcement in reducing earth pressure on buried pipes: experimental and numerical investigations. Soils Found 55(3):588–599. https://doi.org/10.1016/j.sandf.2015.04.010
Akbar A, Bhat JA, Mir BA (2021) Plate load tests for investigation of the load–settlement behaviour of shallow foundation on bitumen-coated geogrid reinforced soil bed. Innov Infrastruct Solut 6(2):1–17
Alobaidi MH, Meguid MA, Chebana F (2019) Predicting seismic-induced liquefaction through ensemble learning frameworks. Sci Rep UK 9:11786
Altay G, Kayadelen C, Taşkıran T, Kaya YZ (2019) A laboratory study on pull-out resistance of geogrid in clay soil. Measurement 139:301–307. https://doi.org/10.1016/j.measurement.2019.02.065
Arjomand MA, Abedi M, Gharib M, Damghani M (2019) An experimental study on geogrid with geotextile effects aimed to improve clayey soil. Int J Eng Trans B 32(5):685–692. https://doi.org/10.5829/ije.2019.32.05b.10
Badakhshan E, Noorzad A, Zameni S (2018) An updating void ratio model for large deformation simulation of geogrid-granular strip anchors plates. Comput Geotech 94:134–149. https://doi.org/10.1016/j.compgeo.2017.09.003
Bao C (2006) Study on interface behavior of geosynthetics and soil. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 25(9):1735–1744
Basudhar PK, Saha S, Deb K (2007) Circular footings resting on geotextile-reinforced sand bed. Geotext Geomembr 25(6):377–384
Benmebarek S, Djeridi S, Benmebarek N, Belounar L (2018) Improvement of bearing capacity of strip footing on reinforced sand. Int J Geotech Eng 12(6):537–545. https://doi.org/10.1080/19386362.2017.1309136
BIS (1980) IS 2720 (part 3, section-1): determination of specific gravity of soil. Bureau of Indian Standards New Delhi, India
BIS:6403 (1981) Code of practice for determination of breaking capacity of shallow foundations. In: Bureau of Indian standards, New Delhi. Bureau of Indian Standards New Delhi
Buonanno A, Montanelli F, Rimoldi P (2000) Preliminary results from an instrumented railways embankment reinforced with a geogrid-geotextile geocomposite. In: Proceedings of the 2nd Asian geosynthetis conference–Kuala Lumpur, pp 127–132
Bureau of Indian Standards (2011) Methods of test for soils, determination of water content dry density relation using light compaction. In: IS : 2720 (part VII-1980), pp 1–16
Cardile G, Gioffrè D, Moraci N, Calvarano LS (2017) Modelling interference between the geogrid bearing members under pullout loading conditions. Geotext Geomembr 45(3):169–177. https://doi.org/10.1016/j.geotexmem.2017.01.008
Chen Q, Abu-Farsakh MY, Sharma R, Zhang X (2007) Laboratory investigation of behavior of foundations on geosynthetic-reinforced clayey soil. Transp Res Rec 2004(1):28–38
Code IS (n.d.-a) IS 1498–1970. Classification and identification of soils for general engineering purposes (first revision)
Code, I. S. (n.d.-b). IS 2720 PART 20-1992.pdf. Determination of liquid limit and plastic limit (second revision)
Cowell MJ, Sprague CJ (1993) Comparison of pull-out performance of geogrids and geotextiles. Geosynthetics 93:579–592
Dembicki E, Jermołowicz P (1991) Soil-geotextile interaction. Geotext Geomembr 10(3):249–268
Espinoza RD (1994) Soil-geotextile interaction: Evaluation of membrane support. Geotext Geomembr 13(5):281–293. https://doi.org/10.1016/0266-1144(94)90024-8
Ferreira FB, Vieira CS, Lopes M (2015) Direct shear behaviour of residual soil–geosynthetic interfaces–influence of soil moisture content, soil density and geosynthetic type. Geosynth Int 22(3):257–272
Ferreira FB, Vieira CS, Lopes ML, Carlos DM (2016) Experimental investigation on the pullout behaviour of geosynthetics embedded in a granite residual soil. Eur J Environ Civ Eng 20(9):1147–1180
Fourie AB, Fabian KJ (1987) Laboratory determination of clay-geotextile interaction. Geotext Geomembr 6(4):275–294
Gao G, Meguid MA (2018a) Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis. Geotext Geomembr 46(6):685–698
Gao G, Meguid MA (2018b) Modeling the impact of a falling rock cluster on rigid structures. Int J Geomech 18(2):4017141
Haghi AK (2009) Experimental analysis of geotextiles and geofibers composites (Issue Feb 2009). Wseas Press
Hasan M, Samadhiya NK (2016) Experimental and numerical analysis of geosynthetic-reinforced floating granular piles in soft clays. Int J Geosynth Ground Eng 2(3):1–13. https://doi.org/10.1007/s40891-016-0062-6
Huang CC, Menq FY (1997) Deep-footing and wide-slab effects in reinforced sandy ground. J Geotech Geoenviron Eng 123(1):30–36. https://doi.org/10.1061/(asce)1090-0241(1997)123:1(30)
Hung HM, Kuwano J, Tachibana S (2015) Effect of prestress in geogrid on stiffness of confined-reinforced earth. Geosynth Eng J 30:31–36. https://doi.org/10.5030/jcigsjournal.30.31
Hung HM, Kuwano J, Tachibana S (2016) Role of prestress in geogrid of confined-reinforced earth method to mitigate bridge approach settlement. In: GA 2016—6th Asian regional conference on geosynthetics: geosynthetics for infrastructure development, proceedings, pp 916–924
Hussein MG, Meguid MA (2016) A three-dimensional finite element approach for modeling biaxial geogrid with application to geogrid-reinforced soils. Geotext Geomembr 44(3):295–307. https://doi.org/10.1016/j.geotexmem.2015.12.004
Hussein MG, Meguid MA (2020) Improved understanding of geogrid response to pullout loading: insights from three-dimensional finite-element analysis. Can Geotech J 57(2):277–293
Indraratna B, Nimbalkar S (2013) Stress–strain degradation response of railway ballast stabilized with geosynthetics. J Geotech Geoenviron Eng 139(5):684–700. https://doi.org/10.1061/(asce)gt.1943-5606.0000758
Indraratna B, Khabbaz H, Salim W, Christie D (2006) Geotechnical properties of ballast and the role of geosynthetics in rail track stabilisation. Ground Improv 10(3):91–101. https://doi.org/10.1680/grim.2006.10.3.91
Indraratna B, Shahin MA, Salim W (2007) Stabilisation of granular media and formation soil using geosynthetics with special reference to railway engineering. Proc Inst Civ Eng-Ground Improv 11(1):27–43
Ingrassia LP, Virgili A, Canestrari F (2020) Effect of geocomposite reinforcement on the performance of thin asphalt pavements: accelerated pavement testing and laboratory analysis. Case Stud Constr Mater 12:e00342. https://doi.org/10.1016/j.cscm.2020.e00342
IS:2720 (Part 4) (1985) Indian standard, methods of test for soils, part 4: grain size analysis. In: Bureau of Indian standards, New Delhi, India.: vol. reaffirmed (issue 2006). Bureau of Indian Standards New Delhi, pp 1–38
Jayamohan J, Shivashankar R (2012) Some studies on prestressed reinforced granular beds overlying weak soil. ISRN Civ Eng 2012:1–13. https://doi.org/10.5402/2012/436327
Kongkitkul W, Tatsuoka F, Hirakawa D (2007) Effects of reinforcement type and loading history on the deformation of reinforced sand in plane strain compression. Soils Found 47(2):395–414. https://doi.org/10.3208/sandf.47.395
Kumar A, Choudhary AK, Shukla SK (2020) Behaviour of strip footing resting on pretensioned geogrid-reinforced ferrochrome slag subgrade. Lecture notes in civil engineering, vol 84. Springer, pp 503–519
Kumar Shukla S, Chandra S (1994) The effect of prestressing on the settlement characteristics of geosynthetic-reinforced soil. Geotext Geomembr 13(8):531–543. https://doi.org/10.1016/0266-1144(94)90017-5
Kunakulsawat V, Punthutaecha K, Youwai S, Kongkitkul W, Jongpradist P, Maneetes H (2010) Physical model test of reinforced flexible pavement. In: 9th international conference on geosynthetics—geosynthetics: advanced solutions for a challenging world, ICG 2010, vol 1, issue 3, pp 1551–1554
Lackner C, Bergado DT, Semprich S (2013) Prestressed reinforced soil by geosynthetics—concept and experimental investigations. Geotext Geomembr 37:109–123. https://doi.org/10.1016/j.geotexmem.2013.02.002
Lackner C, Semprich S (2010) Prestressed geosynthetic reinforced soil by compaction. In: 9th international conference on geosynthetics—geosynthetics: advanced solutions for a challenging world, ICG 2010, pp 717–720
Lopes MJ, Lopes ML (1999) Soil-geosynthetic interaction-influence of soil particle size and geosynthetic structure. Geosynth Int 6(4):261–282
Lovisa J, Shukla SK, Sivakugan N (2010) Behaviour of prestressed geotextile-reinforced sand bed supporting a loaded circular footing. Geotext Geomembr 28(1):23–32
Maheshwari P, Chandra S, Basudhar PK (2004) Modelling of beams on a geosynthetic-reinforced granular fill-soft soil system subjected to moving loads. Geosynth Int 11(5):369–376. https://doi.org/10.1680/gein.2004.11.5.369
Martí-Vargas JR, Serna-Ros P, Fernández-Prada MA, Miguel-Sosa PF, Arbeláez CA (2006) Test method for determination of the transmission and anchorage lengths in prestressed reinforcement. Mag Concr Res 58(1):21–29. https://doi.org/10.1680/macr.2006.58.1.21
Meguid MA, Hussein MoG (2017b) A numerical procedure for the assessment of contact pressures on buried structures overlain by EPS geofoam inclusion. Int J Geosynth Ground Eng 3:1–14
Meguid MA, Hussein MG, Ahmed MR, Omeman Z, Whalen J (2017a) Investigation of soil-geosynthetic-structure interaction associated with induced trench installation. Geotext Geomembr 45(4):320–330
Meidani M, Meguid MA, Chouinard LE (2017) Evaluation of soil–pipe interaction under relative axial ground movement. J Pipeline Syst Eng Pract 8(4):4017009
Mir BA, Ashraf S (2018) Evaluation of load–settlement behaviour of square model footings resting on geogrid reinforced granular soils. In: International congress and exhibition “sustainable civil infrastructures: innovative infrastructure geotechnology”, pp 103–126.
Montanelli F, Recalcati P (2003) Geogrid reinforced railways embankments: design concepts and experimental test results. IABSE Rep 87:212–213. https://doi.org/10.2749/222137803796329899
Müller WW, Saathoff F (2015) Geosynthetics in geoenvironmental engineering. Sci Technol Adv Mater 16:034605
Nazeri A, Ziaie-Moayed R, Ghiasinejad H (2020) Evaluating the efficiency of a composite geosynthetic reinforcement in container yard pavements via laboratory plate load test. Int J Pavement Eng. https://doi.org/10.1080/10298436.2020.1817449
Ngo NT, Indraratna B (2016) Improved performance of rail track substructure using synthetic inclusions: experimental and numerical investigations. Int J Geosyn Ground Eng 2(3):1–16. https://doi.org/10.1007/s40891-016-0065-3
Noory A, Moghadas Nejad F, Khodaii A (2019) Evaluation of the effective parameters on shear resistance of interface in a geocomposite-reinforced pavement. Int J Pavement Eng 20(9):1106–1117. https://doi.org/10.1080/10298436.2017.1394094
Of M, For T, Soils S (2006) Indian Standard methods of test for stabilized soils Indian standard methods of test for stabilized soils. BIS, New Delhi, 4332 (part VIII)
Palmeira EM (2002) Search soil-geotextile compatibility in filtration. Geosynthetics: state of the art-recent developments. In: proceedings of the seventh international conference on geosynthetics, 7-ICG, held 22–27 sep 2002, Nice, France, 3, pp 853–870
Shivashankar R, Jayaraj J (2014a) Behaviour of prestressed geosynthetic reinforced granular beds overlying weak soil. Indian Geotech J 44(1):26–38. https://doi.org/10.1007/s40098-013-0070-6
Shivashankar R, Jayaraj J (2014b) Effects of prestressing the reinforcement on the behavior of reinforced granular beds overlying weak soil. Geotext Geomembr 42(1):69–75. https://doi.org/10.1016/j.geotexmem.2013.08.008
Tran VDH, Meguid MA, Chouinard LE (2013) A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions. Geotext Geomembr 37:1–9. https://doi.org/10.1016/j.geotexmem.2013.01.003
Tran VDH, Meguid MA, Chouinard LE (2014) Discrete element and experimental investigations of the earth pressure distribution on cylindrical shafts. Int J Geomech 14(1):80–91
Yadu L, Tripathi RK (2013) Effect of the length of geogrid layers in the bearing capacity ratio of geogrid reinforced granular fill-soft subgrade soil system. Procedia Soc Behav Sci 104:225–234. https://doi.org/10.1016/j.sbspro.2013.11.115
Zettler TE, Frost JD, DeJong JT (2000) Shear-induced changes in smooth HDPE geomembrane surface topography. Geosynth Int 7(3):243–267. https://doi.org/10.1680/gein.7.0174