Tác động của dòng điện chùm tới cấu trúc vi mô và tính chất của hợp kim Ti-6Al-4V được nấu chảy bằng chùm electron

N. S. Pushilina1, V. A. Klimenov1, R. O. Cherepanov1, E. B. Kashkarov1, V. V. Fedorov1, M. S. Syrtanov1, A. M. Lider1, R. S. Laptev1
1National Research Tomsk Polytechnic University, Tomsk, Russian Federation

Tóm tắt

Trong nghiên cứu này, một máy in 3D không thương mại đã được sử dụng để chế tạo hợp kim Ti-6Al-4V thông qua phương pháp nấu chảy bằng chùm electron (EBM). Tác động của dòng điện chùm lên cấu trúc vi mô, thành phần pha và tính chất cơ học của hợp kim Ti-6Al-4V nấu chảy bằng chùm electron đã được nghiên cứu. Mô phỏng số đã được thực hiện để đánh giá các trường nhiệt trong quá trình nấu chảy bằng chùm electron của bột Ti-6Al-4V. Việc giảm dòng điện chùm từ 3,5 xuống 2,5 mA dẫn đến sự tinh chế cấu trúc vi mô: Bề rộng trung bình của các tấm α giảm từ 10 xuống 6 μm. Sự hình thành cấu trúc vi mô mịn hơn được cho là do tốc độ làm lạnh cao hơn ở dòng điện chùm thấp hơn, điều này đã được xác nhận bởi mô phỏng. Thành phần pha của hợp kim Ti-6Al-4V nấu chảy bằng EBM gián tiếp phụ thuộc vào dòng điện chùm. Hàm lượng pha β cao (7%) đạt được tại dòng điện chùm 3 mA. Các mẫu Ti-6Al-4V được sản xuất có độ cứng vi mô cao (470-520 HV).

Từ khóa

#Ti-6Al-4V #nấu chảy bằng chùm electron #cấu trúc vi mô #thành phần pha #tính chất cơ học #mô phỏng số #độ cứng vi mô

Tài liệu tham khảo

E.W. Collings, R. Boyer, and G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, 2007

E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, and A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 2015, 35, p 55–60

B.B. Straumal, A.R. Kilmametov, Yu Ivanisenko, A.A. Mazilkin, R.Z. Valiev, N.S. Afonikova, A.S. Gornakova, and H. Hahn, Diffusive and Displacive Phase Transitions in Ti-Fe and Ti-Co Alloys Under High Pressure Torsion, J. Alloys Compd., 2018, 735, p 2281–2286

S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting, Metall. Mater. Trans. A, 2016, 47(5), p 1939–1946

U. Ackelid and M. Svensson, Additive manufacturing of dense metal parts by electron beam melting, in Proceedings of the Materials Science and Technology Conference, Pittsburgh, USA, vol. 2529 (2009)

L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact., 2009, 60, p 96–105

H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of the Microstructure and Porosity on Properties of Ti-6Al-4VELI, Alloy Fabricated by Electron Beam Melting (EBM), Addit. Manuf., 2016, 10, p 47–57

S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, The Origin of Microstructural diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Metall. Mater. Trans. A, 2010, 41, p 3422–3434

W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928

C. Wei, X. Ma, X. Yang, M. Zhou, C. Wang, Y. Zheng, W. Zhang, and Z. Li, Microstructural and Property Evolution of Ti6Al4 V Powders with the Number of Usage in Additive Manufacturing by Electron Beam Melting, Mater. Lett., 2018, 221, p 111–114

W. Everhart, J. Dinardo, and C. Barr, The Effect of Scan Length on the Structure and Mechanical Properties of Electron Beam-Melted Ti-6Al-4V, Metall. Mater. Trans. A, 2017, 48(2), p 697–705

N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, and J. Blackburn, Progress in Additive Manufacturing on New Materials: A Review, J. Mater. Sci. Technol., 2019, 35(2), p 242–269

L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science, Mater. J. Sci. Technol., 2012, 1(1), p 42–54

R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, and A.D. Rollett, Analyzing the Effects of Powder and Post-Processing on Porosity and Properties of Electron Beam Melted Ti-6Al-4V, Mater. Res. Lett., 2017, 5(7), p 516–525

L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312

W.A. Grell, E. Solis-Ramos, E. Clark, E. Lucon, E.J. Garboczi, P.K. Predecki, Z. Loftus, and M. Kumos, Effect of Powder Oxidation on the Impact Toughness of Electron Beam Melting Ti-6Al-4V, Addit. Manuf., 2017, 17, p 123–134

X. Wang, X. Gong, and K. Chou, Scanning Speed Effect on Mechanical Properties of Ti-6Al-4V Alloy Processed by Electron Beam Additive Manufacturing, Procedia Manuf., 2015, 1, p 287–295

C. Guo, W. Ge, and F. Lin, Effects of Scanning Parameters on Material Deposition During Electron Beam Selective Melting of Ti-6Al-4V Powder, J. Mater. Process. Technol., 2015, 217, p 148–157

S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, and P.B. Prangnell, XCT Analysis of the Influence of Melt Strategies on Defect Population in Ti-6Al-4V Components Manufactured by Selective Electron Beam Melting, Mater. Charact., 2015, 102, p 47–61

H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and E.B. Stucker, Microstructures and Mechanical Properties of Ti6Al4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, JMEPEG, 2013, 22, p 3872–3883

X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, and R.B. Wicker, Compression Deformation Behavior of Ti-6Al-4V Alloy with Cellular Structures Fabricated by Electron Beam Melting, J. Mech. Behav. Biomed. Mater., 2012, 16, p 153–162

J. Bruno, A. Rochman, and G. Cassar, Effect of Build Orientation of Electron Beam Melting on Microstructure and Mechanical Properties of Ti-6Al-4V, J. Mater. Eng. Perform., 2017, 26(2), p 692–703

M. Galati and L. Luliano, A Literature Review of Powder-Based Electron Beam Melting Focusing on Numerical Simulations, Addit. Manuf., 2018, 19, p 1–20

R. Hu, X. Chen, G. Yang, S. Gong, and S. Pang, Metal Transfer in Wire Feeding-Based Electron Beam 3D Printing: Modes, Dynamics, and Transition Criterion, Int. J. Heat Mass Transf., 2018, 126, p 877–887

M.F. Zah and S. Lutzmann, Modelling and Simulation of Electron Beam Melting, Prod. Eng. Res. Dev., 2010, 4, p 15–23

R.O. Cherepanov and A.V. Gerasimov, Numerical Modelling of Heat Transfer During Impact of a Molten Droplet on a Surface, MATEC Web Conf., 2016, 72, p 1–4

X. Tan, Y. Kok, Y.J. Tan, M. Descoins, M. Dominique, S.B. Tor, K.F. Leong, and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V Via Electron Beam Melting, Acta Mater., 2015, 97, p 1–16

N. Pushilina, M. Syrtanov, E. Kashkarov, T. Murashkina, V. Kudiiarov, R. Laptev, A. Lider, and A. Koptyug, Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V, Materials, 2018, 11(5), p 763