Bayesian regularization of Gaussian graphical models with measurement error

Computational Statistics and Data Analysis - Tập 156 - Trang 107085 - 2021
Michael Byrd1, Linh H. Nghiem2, Monnie McGee1
1Department of Statistical Science, Southern Methodist University, TX, 75206, USA
2Research School of Finance, Actuarial Studies, and Statistics, Australian National University, ACT 2601, Australia

Tài liệu tham khảo

Cai, 2011, A constrained l1 minimization approach to sparse precision matrix estimation, J. Amer. Statist. Assoc., 106, 594, 10.1198/jasa.2011.tm10155 Carroll, 2006 Dempster, 1972, Covariance selection, Biometrics, 157, 10.2307/2528966 Deshpande, 2017 Friedman, 2008, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9, 432, 10.1093/biostatistics/kxm045 Gan, 2018, Bayesian regularization for graphical models with unequal shrinkage, J. Amer. Statist. Assoc., 1 Huang, 2009, Predicting relapse in favorable histology wilms tumor using gene expression analysis: a report from the renal tumor committee of the children’s oncology group, Clin. Cancer Res., 15, 1770, 10.1158/1078-0432.CCR-08-1030 Johnstone, 2001, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., 29, 295, 10.1214/aos/1009210544 Khare, 2015, A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees, J. R. Stat. Soc. Ser. B Stat. Methodol., 77, 803, 10.1111/rssb.12088 Krämer, 2009, Regularized estimation of large-scale gene association networks using graphical Gaussian models, BMC Bioinformatics, 10, 384, 10.1186/1471-2105-10-384 Lauritzen, 1996 Liang, 2018, An imputation–regularized optimization algorithm for high dimensional missing data problems and beyond, J. R. Stat. Soc. Ser. B Stat. Methodol., 80, 899, 10.1111/rssb.12279 Liu, 2017, Tiger: A tuning-insensitive approach for optimally estimating gaussian graphical models, Electron. J. Stat., 11, 241, 10.1214/16-EJS1195 Nghiem, 2018 O’Leary, 2015, Reference sequence (refseq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res., 44, D733, 10.1093/nar/gkv1189 Petersen, 2008, The matrix cookbook, Tech. Univ. Denmark, 7, 510 Rocke, 2001, A model for measurement error for gene expression arrays, J. Comput. Biol., 8, 557, 10.1089/106652701753307485 Ročková, 2018, The spike-and-slab lasso, J. Amer. Statist. Assoc., 113, 431, 10.1080/01621459.2016.1260469 Ročková, 2018, Bayesian estimation of sparse signals with a continuous spike-and-slab prior, Ann. Statist., 46, 401, 10.1214/17-AOS1554 Segal, 2003, Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nat. Genet., 34, 166, 10.1038/ng1165 Sørensen, 2015, Measurement error in lasso: Impact and likelihood bias correction, Statist. Sinica, 809 Tan, 2016, Replicates in high dimensions, with applications to latent variable graphical models, Biometrika, 103, 761, 10.1093/biomet/asw050 Turro, 2007, BGX: a Bioconductor package for the bayesian integrated analysis of affymetrix genechips, BMC Bioinformatics, 8, 439, 10.1186/1471-2105-8-439 Yuan, 2007, Model selection and estimation in the Gaussian graphical model, Biometrika, 94, 19, 10.1093/biomet/asm018 Zakharkin, 2005, Sources of variation in affymetrix microarray experiments, BMC Bioinform., 6, 214, 10.1186/1471-2105-6-214 Zhao, 2012, The huge package for high-dimensional undirected graph estimation in R, J. Mach. Learn. Res., 13, 1059 Honorio, 2012