Bayesian quantile regression for parametric nonlinear mixed effects models

Journal of the Italian Statistical Society - Tập 21 Số 3 - Trang 279-295 - 2012
Jing Wang1
1School of Public Health, Saint Louis University, St. Louis, MO, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Davidian M, Giltinan M (1995) Nonlinear models for repeated measurement data. Chapman & Hall, London

Gelfand AE et al (1990) Illustration of Bayesian inference in normal data models using Gibbs sampling. J Am Stat Assoc 85: 972–985

Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8: 140–154

Geweke J (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo J, Berger J, Dawid A, Smith M (eds) Bayesian statistics. Oxford University Press, Oxford, pp 169–193

Gilks WR, Best NG, Tan KKC (1995) Adaptive rejection sampling for Gibbs sampling. Appl Stat 44: 455–472

Karlsson A (2008) Nonlinear quantile regression estimation of longitudinal data. Commun Stat Simul Comput 37: 114–131

Koenker R (1984) A note on L-estimators for linear models. Stat and Prob Lett 2: 323–325

Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91: 74–89

Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46: 33–50

Koenker R, Machado J (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94: 1296–1310

Nelder A, Mead R (1965) A simplex method for function minimization. Comput J 7: 308–313

O’Neill R (1971) Function minimization using a simplex procedure, Algorithm AS47. Appl Stat 20: 338–345

Potvin C, Lechowicz MJ, Tardif S (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71: 1389–1400

R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org .

SAS Institute Inc (2008) SAS/STAT 9.2 User’s Guide. SAS Institute Inc, Cary, NC

Wakefield JC, Smith AF, Racine-Poon A, Gelfand AE (1994) Bayesian analysis of linear and nonlinear population models using the Gibbs sampler. Appl Stat 43: 201–221

Yu K, Moyeed A (2001) Bayesian quantile regression. Stat Probab Lett 54: 437–447

Yu K, Stander J (2007) Bayesian analysis of a Tobit quantile regression model. J Econ 137: 260–276

Yuan Y, Yin G (2010) Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66: 105–114