Bayesian parameter inference for individual-based models using a Particle Markov Chain Monte Carlo method
Tài liệu tham khảo
Albert, 2014, A simulated annealing approach to approximate Bayes computations, Stat. Comput., 1
Andrieu, 2010, Particle Markov chain Monte Carlo methods, J. Roy. Stat. Soc. B, 72, 269, 10.1111/j.1467-9868.2009.00736.x
Andrieu, 2009, The pseudo-marginal approach for efficient Monte Carlo computations, Ann. Statistics, 37, 697, 10.1214/07-AOS574
Beaumont, 2003, Estimation of population growth or decline in genetically monitored populations, Genetics, 164, 1139, 10.1093/genetics/164.3.1139
Beaumont, 2010, Approximate bayesian computation in evolution and ecology, vol. 41, 379
Brown, 2004, Agent-based and analytical modeling to evaluate the effectiveness of greenbelts, Environ. Modell. Softw., 19, 1097, 10.1016/j.envsoft.2003.11.012
Brown, 2004, Toward a metabolic theory of ecology, Ecology, 85, 1771, 10.1890/03-9000
Blum, 2013, A comparative review of dimension reduction methods in approximate bayesian computation, Stat. Sci., 28, 189, 10.1214/12-STS406
Chopin, 2013, SMC2: an efficient algorithm for sequential analysis of state space models, J. Roy. Stat. Soc. B, 75, 397, 10.1111/j.1467-9868.2012.01046.x
Csillery, 2010, Approximate bayesian computation (ABC) in practice, Trends Ecol. Evol., 25, 410, 10.1016/j.tree.2010.04.001
DeAngelis, 2005, Individual-based modeling of ecological and evolutionary processes, Annu. Rev. Ecol. Evol. S, 147, 10.1146/annurev.ecolsys.36.102003.152644
Elliot, 1971
Ellison, 2004, Bayesian inference in ecology, Ecol. Lett., 7, 509, 10.1111/j.1461-0248.2004.00603.x
Fearnhead, 2012, Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation, J. Roy. Stat. Soc. B, 74, 419, 10.1111/j.1467-9868.2011.01010.x
Flury, 2011, Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models, Econ. Theor., 27, 933, 10.1017/S0266466610000599
Foley, 2015, A bayesian approach to social structure uncovers cryptic regulation of group dynamics in Drosophila melanogaster, Am. Nat., 185, 797, 10.1086/681084
Gamerman, 2006
Gelman, 2014
Golightly, 2015, Delayed acceptance particle MCMC for exact inference in stochastic kinetic models, Stat. Comput., 25, 1039, 10.1007/s11222-014-9469-x
Grimm, 1999, Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future?, Ecol. Model., 115, 129, 10.1016/S0304-3800(98)00188-4
Grimm, 2014, Towards better modelling and decision support: documenting model development, testing, and analysis using TRACE, Ecol. Model., 280, 129, 10.1016/j.ecolmodel.2014.01.018
Grimm, 2006, A standard protocol for describing individual-based and agent-based models, Ecol. Model., 198, 115, 10.1016/j.ecolmodel.2006.04.023
Grimm, 2010, The ODD protocol A review and first update, Ecol. Model., 221, 2760, 10.1016/j.ecolmodel.2010.08.019
Grimm, 2005
Grimm, 2005, Pattern-oriented modeling of agent-based complex systems: lessons from ecology, Science, 310, 987, 10.1126/science.1116681
Hartig, 2011, Statistical inference for stochastic simulation models - theory and application, Ecol. Lett., 14, 816, 10.1111/j.1461-0248.2011.01640.x
Hartig, 2014, Technical Note: approximate Bayesian parameterization of a process-based tropical forest model, Biogeosciences, 11, 1261, 10.5194/bg-11-1261-2014
Hastings, 1970, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97, 10.1093/biomet/57.1.97
Huston, 1988, New computer-models unify ecological theory - computer-simulations show that many ecological patterns can be explained by interactions among individual organisms, Bioscience, 38, 682, 10.2307/1310870
Kantas, 2015, On particle methods for parameter estimation in state-space models, Stat. Sci., 30, 328, 10.1214/14-STS511
Kattwinkel, 2016, Modelling macroinvertebrate community dynamics in stream mesocosms contaminated with pesticide, Environ. Sci. Technol., 50, 3165, 10.1021/acs.est.5b04068
Lagarrigues, 2015, Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model, Ecol. Model., 306, 278, 10.1016/j.ecolmodel.2014.09.023
Marchand, 2015, Testing models of bee foraging behavior through the analysis of pollen loads and floral density data, Ecol. Model., 313, 41, 10.1016/j.ecolmodel.2015.06.019
Marjoram, 2003, Markov chain Monte Carlo without likelihoods, P. Nat. Acad. Sci. U. S. A., 100, 15324, 10.1073/pnas.0306899100
Metropolis, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087, 10.1063/1.1699114
Owen, 2015, Likelihood free inference for Markov processes: a comparison, Stat. Appl. Genet. Mo. B, 14, 189
Plummer, 2006
R Core Team, 2015
Refsgaard, 2007, Uncertainty in the environmental modelling process - a framework and guidance, Environ. Modell. Softw., 22, 1543, 10.1016/j.envsoft.2007.02.004
Reichert, 2015, The conceptual foundation of environmental decision support, J. Environ. Manage, 154, 316
Robert, 2011, Lack of confidence in approximate Bayesian computation model choice, P. Nat. Acad. Sci. U. S. A., 108, 15112, 10.1073/pnas.1102900108
Schuwirth, 2015, The importance of biotic interactions for the prediction of macroinvertebrate communities under multiple stressors, Funct. Ecol., 30, 974, 10.1111/1365-2435.12605
Schuwirth, 2013, Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams, Ecology, 94, 368, 10.1890/12-0591.1
Sherlock, 2015, On the efficiency of pseudo-marginal random walk Metropolis algorithms, Ann. Statistics, 43, 238, 10.1214/14-AOS1278
Sibly, 2013, Representing the acquisition and use of energy by individuals in agent-based models of animal populations, Methods Ecol. Evol., 4, 151, 10.1111/2041-210x.12002
Thiele, 2014, Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and 'R', JASSS, 17, 11, 10.18564/jasss.2503
Topping, 2012, Post-hoc pattern-oriented testing and tuning of an existing large model: lessons from the field vole, PLoS ONE, 7, 10.1371/journal.pone.0045872
van der Vaart, 2015, Calibration and evaluation of individual-based models using Approximate Bayesian Computation, Ecol. Model., 312, 182, 10.1016/j.ecolmodel.2015.05.020
