Bayesian optimization on graph-structured search spaces: Optimizing deep multimodal fusion architectures
Tài liệu tham khảo
Augasta, 2013, Pruning algorithms of neural networks — a comparative study, Cent. Eur. J. Comput. Sci., 3, 105
B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architectures using reinforcement learning, arXiv preprint arXiv:1611.02167 (2016).
Bergstra, 2012, Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281
Bergstra, 2011, Algorithms for hyper-parameter optimization, 2546
Chaquet, 2013, A survey of video datasets for human action and activity recognition, Comput. Vis. Image Underst., 117, 633, 10.1016/j.cviu.2013.01.013
T. Chen, I. Goodfellow, J. Shlens, Net2Net: accelerating learningvia knowledge transfer, ArXiv e-prints arXiv:1511.05641 (2015).
Ding, 2013, Evolutionary artificial neural networks: a review, Artif. Intell. Rev., 39, 251, 10.1007/s10462-011-9270-6
Elman, 1993, Learning and development in neural networks: the importance of starting small, Cognition, 48, 71, 10.1016/0010-0277(93)90058-4
Escalera, 2014, Chalearn looking at people challenge 2014: dataset and results
Feng, 2015, Learning the structure of deep convolutional networks, 2749
T. Ganegedara, L. Ott, F. Ramos, Online adaptation of deep architectures with reinforcement learning, arXiv preprint arXiv:1608.02292 (2016).
Han, 2015, Learning both weights and connections for efficient neural network, 1135
E. Hazan, A. Klivans, Y. Yuan, Hyperparameter optimization: a spectral ap-proach, arXiv preprint arXiv:1706.00764 (2017).
He, 2016, Deep residual learning for image recognition
F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential Model-Based Optimization for General Algorithm Configuration, Springer, Berlin, Heidelberg, pp. 507–523.
Kulkarni, 2015, Learning the structure of deep architectures using L1 regularization
Kwok, 1997, Constructive algorithms for structure learning in feedforward neural networks for regression problems, IEEE Trans. Neural Netw., 8, 630, 10.1109/72.572102
Lafferty, 2002, Diffusion kernels on graphs and other discrete structures, 315
Li, 2017, Modout: learning multi-modal architectures by stochastic regularization, 422
L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: a novel bandit-based approach to hyperparameter optimization, arXiv preprint arXiv:1603.06560 (2016).
R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, A. Navruzyan, N. Duffy, B. Hodjat, Evolving deep neural networks, arXiv preprint arXiv:1703.00548 (2017).
Murdock, 2016, Blockout: dynamic model selection for hierarchical deep networks
Navarin, 2017, Approximated neighbours minhash graph node kernel, 281
Neuhaus, 2006, Edit distance-based kernel functions for structural pattern classification, Pattern Recogn., 39, 1852, 10.1016/j.patcog.2006.04.012
Neverova, 2015, Moddrop: adaptive multi-modal gesture recognition, IEEE Trans. Pattern Anal. Mach. Intell., PP
Ngiam, 2011, Multimodal deep learning, 689
Ojha, 2017, Metaheuristic design of feedforward neural networks: a review of two decades of research, Eng. Appl. Artif. Intell., 60, 97, 10.1016/j.engappai.2017.01.013
Rasmussen, 2006
E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, Q. Le, A. Kurakin, Large-scale evolution of image classifiers, arXiv preprint arXiv:1703.01041 (2017).
Reiss, 2012, Introducing a new benchmarked dataset for activity monitoring
Ruffieux, 2014, A survey of datasets for human gesture recognition, 337
Shahriari, 2016, Taking the human out of the loop: a review of Bayesian optimization, Proc. IEEE, 104, 148, 10.1109/JPROC.2015.2494218
Sitova, 2016, HMOG: new behavioral biometric features for continuous authentication of smartphone users, IEEE Trans. Inf. Forensics Secur., 11, 877, 10.1109/TIFS.2015.2506542
Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929
Srivastava, 2012, Multimodal learning with deep Boltzmann machines, 2222
Stanley, 2002, Evolving neural networks through augmenting topologies, Evol. Comput., 10, 99, 10.1162/106365602320169811
Sung, 2011, Human activity detection from RGBD images
Sung, 2012, Unstructured human activity detection from RGBD images, 842
Szegedy, 2015, Going deeper with convolutions, 1
P. Verbancsics, J. Harguess, Generative neuroevolution for deep learning, arXiv preprint arXiv:1312.5355 (2013).
Vishwanathan, 2010, Graph kernels, J. Mach. Learn. Res., 11, 1201
Z. Wang, C. Gehring, P. Kohli, S. Jegelka, Ensemble Bayesian optimization, arXiv preprint arXiv:1706.01445 (2017).
Wen, 2016, Learning structured sparsity in deep neural networks, 2074
Yang, 2014, A structure optimization algorithm of neural networks for large-scale data sets, 956
Yao, 1993, A review of evolutionary artificial neural networks, Int. J. Intell. Syst., 8, 539, 10.1002/int.4550080406
Zoph, 2017, Neural architecture search with reinforcement learning