Bayesian modeling of inconsistent plastic response due to material variability

F. Rizzi1, M. Khalil2, R.E. Jones3, J.A. Templeton4, J.T. Ostien3, B.L. Boyce5
1Scalable Modeling and Analysis Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA
2Quantitative Modeling and Analysis Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA
3Mechanics of Materials Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA
4Thermal/Fluid Science and Engineering Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA
5Materials Mechanics and Tribology Department, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA

Tài liệu tham khảo

Hill, 1963, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357, 10.1016/0022-5096(63)90036-X Nemat-Nasser, 1999, Averaging theorems in finite deformation plasticity, Mech. Mater., 31, 493, 10.1016/S0167-6636(98)00073-8 McDowell, 2011, Representation and computational structure–property relations of random media, JOM J. Minerals Metals Mater. Soc., 63, 45, 10.1007/s11837-011-0045-y Mandadapu, 2012, A homogenization method for thermomechanical continua using extensive physical quantities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468, 1696 Dingreville, 2010, The effect of microstructural representation on simulations of microplastic ratcheting, Int. J. Plast., 26, 617, 10.1016/j.ijplas.2009.09.004 Battaile, 2015, Crystal plasticity simulations of microstructure-induced uncertainty in strain concentration near voids in brass, Phil. Mag., 95, 1069, 10.1080/14786435.2015.1009958 Emery, 2015, Predicting laser weld reliability with stochastic reduced-order models, Internat. J. Numer. Methods Engrg., 103, 914, 10.1002/nme.4935 Taguchi, 2005 Park, 2006, Robust design: an overview, AIAA J., 44, 181, 10.2514/1.13639 Bergman, 2009 Øksendal, 2003, Stochastic differential equations, 65 Dullerud, 2013 Frazier, 2014, Metal additive manufacturing: a review, J. Mater. Eng. Performance, 23, 1917, 10.1007/s11665-014-0958-z B.L. Boyce, B.C. Salzbrenner, J.M. Rodelas, L.P. Swiler, J.D. Madison, B.H. Jared, Y.-L. Shen, Extreme-value statistics reveal rare failure-critical defects in additive manufacturing, Advanced Engineering Materials. Le Maître, 2010 Xiu, 2010 Smith, 2013 Gelman, 2013 Soize, 2000, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probab. Eng. Mech., 15, 277, 10.1016/S0266-8920(99)00028-4 Strong, 2014, When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies, SIAM/ASA J. Uncertain. Quantif., 2, 106, 10.1137/120889563 Sargsyan, 2015, On the statistical Calibration of physical models, Int. J. Chem. Kinetics, 47, 246, 10.1002/kin.20906 He, 2016, Numerical strategy for model correction using physical constraints, J. Comput. Phys., 313, 617, 10.1016/j.jcp.2016.02.054 Pernot, 2017, A critical review of statistical calibration/prediction models handling data inconsistency and model inadequacy, AIChE J., 63, 4642, 10.1002/aic.15781 Zio, 2018, Bayesian Assessment of uncertainty in viscosity closure models for turbidity currents computations, Comput. Methods Appl. Mech. Engrg., 342, 653, 10.1016/j.cma.2018.08.023 Morrison, 2018, Representing model inadequacy: A stochastic operator approach, SIAM/ASA J. Uncertain. Quantif., 6, 457, 10.1137/16M1106419 Hakim, 2018, Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition, Combust. Theory Model., 22, 446, 10.1080/13647830.2017.1403653 Field, 2015, On the efficacy of stochastic collocation, stochastic galerkin, and stochastic reduced order models for solving stochastic problems, Probab. Eng. Mech., 41, 60, 10.1016/j.probengmech.2015.05.002 H. Rappel, L. Beex, L. Noels, S. Bordas, Identifying elastoplastic parameters with bayes’ theorem considering output error, input error and model uncertainty, Probabilistic Engineering Mechanics. Kučerová, 2010, Uncertainty updating in the description of heterogeneous materials, Technische Mechanik, 30, 211 Farrell, 2015, A bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems, J. Comput. Phys., 295, 189, 10.1016/j.jcp.2015.03.071 Beck, 2010, Bayesian System identification based on probability logic, Struct. Control Health Monit., 17, 825, 10.1002/stc.424 Kass, 1995, Bayes factor review; improper prior, J. Amer. Statist. Assoc., 90, 773, 10.1080/01621459.1995.10476572 Berger, 1996, The intrinsic bayes factor for model selection and prediction, J. Amer. Statist. Assoc., 91, 109, 10.1080/01621459.1996.10476668 Verdinelli, 1996, Bayes factors, nuisance parameters, and imprecise tests, 765 Naylor, 1982, Applications of a method for the efficient computation of posterior distributions, Appl. Stat., 214, 10.2307/2347995 Liu, 1994, A note on gauss-hermite quadrature, Biometrika, 81, 624 Khalil, 2018, Probabilistic inference of reaction rate parameters from summary statistics, Combust. Theory Model., 22, 635, 10.1080/13647830.2017.1370557 Kennedy, 2001, Bayesian Calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 425, 10.1111/1467-9868.00294 Simo, 1988, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 199, 10.1016/0045-7825(88)90076-X Simo, 1998 A.G. Salinger, R.A. Bartlett, A.M. Bradley, Q. Chen, I.P. Demeshko, X. Gao, G.A. Hansen, A. Mota, R.P. Muller, E. Nielsen, et al. Albany: Using component-based design to develop a flexible, generic multiphysics analysis code, International Journal for Multiscale Computational Engineering 14 (4). Sivia, 1996 Marzouk, 2007, Stochastic spectral methods for efficient bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010 Rizzi, 2012, Uncertainty quantification in MD simulations. Part II: Inference of force-field parameters, SIAM J. Multiscale Model. Simul., 10, 1460, 10.1137/110853170 Rizzi, 2013, Uncertainty quantification in md simulations of concentration driven ionic flow through a silica nanopore. ii. uncertain potential parameters, J. Chem. Phys., 138 Gamerman, 2006 Berg, 2008 Higdon, 2004, Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26, 448, 10.1137/S1064827503426693 Bayarri, 2007, A framework for validation of computer models, Technometrics, 49, 138, 10.1198/004017007000000092 Oden, 2017, Predictive computational science: Computer predictions in the presence of uncertainty, 1 Terejanu, 2016, From model calibration and validation to reliable extrapolations, 205 Morrison, 2018, Representing model inadequacy: A stochastic operator approach, SIAM/ASA J. Uncertain. Quantif., 6, 457, 10.1137/16M1106419 M. Salloum, J.A. Templeton, Inference and uncertainty propagation of atomistically-informed continuum constitutive laws, part 1: Bayesian inference of fixed model forms, International Journal for Uncertainty Quantification 4 (2). M. Salloum, J.A. Templeton, Inference and uncertainty propagation of atomistically informed continuum constitutive laws, part 2: Generalized continuum models based on gaussian processes, International Journal for Uncertainty Quantification 4 (2). Muto, 2008, Bayesian Updating and model class selection for hysteretic structural models using stochastic simulation, J. Vib. Control, 14, 7, 10.1177/1077546307079400 Sandhu, 2017, Bayesian Model selection using automatic relevance determination for nonlinear dynamical systems, Comput. Methods Appl. Mech. Engrg., 320, 237, 10.1016/j.cma.2017.01.042 Konishi, 2007 Le Maître, 2010 Wiener, 1938, The homogeneous chaos, Am. J. Math., 60, 897, 10.2307/2371268 Ghanem, 1991 Xiu, 2002, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826 Marzouk, 2007, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010 Khalil, 2015, Uncertainty quantification in LES of a turbulent bluff-body stabilized flame, Proc. Combust. Inst., 35, 1147, 10.1016/j.proci.2014.05.030 B. Debusschere, K. Sargsyan, C. Safta, K. Chowdhary, UQ Toolkit, http://www.sandia.gov/UQToolkit (2017). Bolstad, 2016 Safta, 2017, Uncertainty quantification in LES of channel flow, Internat. J. Numer. Methods Fluids, 83, 376, 10.1002/fld.4272