Bayesian modeling of inconsistent plastic response due to material variability
Tài liệu tham khảo
Hill, 1963, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357, 10.1016/0022-5096(63)90036-X
Nemat-Nasser, 1999, Averaging theorems in finite deformation plasticity, Mech. Mater., 31, 493, 10.1016/S0167-6636(98)00073-8
McDowell, 2011, Representation and computational structure–property relations of random media, JOM J. Minerals Metals Mater. Soc., 63, 45, 10.1007/s11837-011-0045-y
Mandadapu, 2012, A homogenization method for thermomechanical continua using extensive physical quantities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468, 1696
Dingreville, 2010, The effect of microstructural representation on simulations of microplastic ratcheting, Int. J. Plast., 26, 617, 10.1016/j.ijplas.2009.09.004
Battaile, 2015, Crystal plasticity simulations of microstructure-induced uncertainty in strain concentration near voids in brass, Phil. Mag., 95, 1069, 10.1080/14786435.2015.1009958
Emery, 2015, Predicting laser weld reliability with stochastic reduced-order models, Internat. J. Numer. Methods Engrg., 103, 914, 10.1002/nme.4935
Taguchi, 2005
Park, 2006, Robust design: an overview, AIAA J., 44, 181, 10.2514/1.13639
Bergman, 2009
Øksendal, 2003, Stochastic differential equations, 65
Dullerud, 2013
Frazier, 2014, Metal additive manufacturing: a review, J. Mater. Eng. Performance, 23, 1917, 10.1007/s11665-014-0958-z
B.L. Boyce, B.C. Salzbrenner, J.M. Rodelas, L.P. Swiler, J.D. Madison, B.H. Jared, Y.-L. Shen, Extreme-value statistics reveal rare failure-critical defects in additive manufacturing, Advanced Engineering Materials.
Le Maître, 2010
Xiu, 2010
Smith, 2013
Gelman, 2013
Soize, 2000, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probab. Eng. Mech., 15, 277, 10.1016/S0266-8920(99)00028-4
Strong, 2014, When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies, SIAM/ASA J. Uncertain. Quantif., 2, 106, 10.1137/120889563
Sargsyan, 2015, On the statistical Calibration of physical models, Int. J. Chem. Kinetics, 47, 246, 10.1002/kin.20906
He, 2016, Numerical strategy for model correction using physical constraints, J. Comput. Phys., 313, 617, 10.1016/j.jcp.2016.02.054
Pernot, 2017, A critical review of statistical calibration/prediction models handling data inconsistency and model inadequacy, AIChE J., 63, 4642, 10.1002/aic.15781
Zio, 2018, Bayesian Assessment of uncertainty in viscosity closure models for turbidity currents computations, Comput. Methods Appl. Mech. Engrg., 342, 653, 10.1016/j.cma.2018.08.023
Morrison, 2018, Representing model inadequacy: A stochastic operator approach, SIAM/ASA J. Uncertain. Quantif., 6, 457, 10.1137/16M1106419
Hakim, 2018, Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition, Combust. Theory Model., 22, 446, 10.1080/13647830.2017.1403653
Field, 2015, On the efficacy of stochastic collocation, stochastic galerkin, and stochastic reduced order models for solving stochastic problems, Probab. Eng. Mech., 41, 60, 10.1016/j.probengmech.2015.05.002
H. Rappel, L. Beex, L. Noels, S. Bordas, Identifying elastoplastic parameters with bayes’ theorem considering output error, input error and model uncertainty, Probabilistic Engineering Mechanics.
Kučerová, 2010, Uncertainty updating in the description of heterogeneous materials, Technische Mechanik, 30, 211
Farrell, 2015, A bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems, J. Comput. Phys., 295, 189, 10.1016/j.jcp.2015.03.071
Beck, 2010, Bayesian System identification based on probability logic, Struct. Control Health Monit., 17, 825, 10.1002/stc.424
Kass, 1995, Bayes factor review; improper prior, J. Amer. Statist. Assoc., 90, 773, 10.1080/01621459.1995.10476572
Berger, 1996, The intrinsic bayes factor for model selection and prediction, J. Amer. Statist. Assoc., 91, 109, 10.1080/01621459.1996.10476668
Verdinelli, 1996, Bayes factors, nuisance parameters, and imprecise tests, 765
Naylor, 1982, Applications of a method for the efficient computation of posterior distributions, Appl. Stat., 214, 10.2307/2347995
Liu, 1994, A note on gauss-hermite quadrature, Biometrika, 81, 624
Khalil, 2018, Probabilistic inference of reaction rate parameters from summary statistics, Combust. Theory Model., 22, 635, 10.1080/13647830.2017.1370557
Kennedy, 2001, Bayesian Calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 425, 10.1111/1467-9868.00294
Simo, 1988, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 199, 10.1016/0045-7825(88)90076-X
Simo, 1998
A.G. Salinger, R.A. Bartlett, A.M. Bradley, Q. Chen, I.P. Demeshko, X. Gao, G.A. Hansen, A. Mota, R.P. Muller, E. Nielsen, et al. Albany: Using component-based design to develop a flexible, generic multiphysics analysis code, International Journal for Multiscale Computational Engineering 14 (4).
Sivia, 1996
Marzouk, 2007, Stochastic spectral methods for efficient bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010
Rizzi, 2012, Uncertainty quantification in MD simulations. Part II: Inference of force-field parameters, SIAM J. Multiscale Model. Simul., 10, 1460, 10.1137/110853170
Rizzi, 2013, Uncertainty quantification in md simulations of concentration driven ionic flow through a silica nanopore. ii. uncertain potential parameters, J. Chem. Phys., 138
Gamerman, 2006
Berg, 2008
Higdon, 2004, Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26, 448, 10.1137/S1064827503426693
Bayarri, 2007, A framework for validation of computer models, Technometrics, 49, 138, 10.1198/004017007000000092
Oden, 2017, Predictive computational science: Computer predictions in the presence of uncertainty, 1
Terejanu, 2016, From model calibration and validation to reliable extrapolations, 205
Morrison, 2018, Representing model inadequacy: A stochastic operator approach, SIAM/ASA J. Uncertain. Quantif., 6, 457, 10.1137/16M1106419
M. Salloum, J.A. Templeton, Inference and uncertainty propagation of atomistically-informed continuum constitutive laws, part 1: Bayesian inference of fixed model forms, International Journal for Uncertainty Quantification 4 (2).
M. Salloum, J.A. Templeton, Inference and uncertainty propagation of atomistically informed continuum constitutive laws, part 2: Generalized continuum models based on gaussian processes, International Journal for Uncertainty Quantification 4 (2).
Muto, 2008, Bayesian Updating and model class selection for hysteretic structural models using stochastic simulation, J. Vib. Control, 14, 7, 10.1177/1077546307079400
Sandhu, 2017, Bayesian Model selection using automatic relevance determination for nonlinear dynamical systems, Comput. Methods Appl. Mech. Engrg., 320, 237, 10.1016/j.cma.2017.01.042
Konishi, 2007
Le Maître, 2010
Wiener, 1938, The homogeneous chaos, Am. J. Math., 60, 897, 10.2307/2371268
Ghanem, 1991
Xiu, 2002, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826
Marzouk, 2007, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010
Khalil, 2015, Uncertainty quantification in LES of a turbulent bluff-body stabilized flame, Proc. Combust. Inst., 35, 1147, 10.1016/j.proci.2014.05.030
B. Debusschere, K. Sargsyan, C. Safta, K. Chowdhary, UQ Toolkit, http://www.sandia.gov/UQToolkit (2017).
Bolstad, 2016
Safta, 2017, Uncertainty quantification in LES of channel flow, Internat. J. Numer. Methods Fluids, 83, 376, 10.1002/fld.4272