Đánh giá phương pháp trung bình mô hình Bayes trong quản lý nước ngầm dưới sự không chắc chắn về cấu trúc mô hình

Springer Science and Business Media LLC - Tập 24 - Trang 845-861 - 2010
Frank T.-C. Tsai1
1Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, USA

Tóm tắt

Nghiên cứu này giới thiệu phương pháp trung bình mô hình Bayes (BMA) để xử lý sự không chắc chắn về cấu trúc mô hình trong các quyết định quản lý nước ngầm. Một chính sách tối ưu đáng tin cậy nên xem xét sự không chắc chắn của các tham số mô hình cũng như sự không chắc chắn trong cấu trúc mô hình không chính xác. Do lượng dữ liệu đầu nước ngầm và dữ liệu dẫn thủy lực hạn chế, một số mô hình mô phỏng được phát triển dựa trên các giá trị điều kiện biên đầu nước khác nhau và các mô hình bán phương sai của dẫn thủy lực. Thay vì chọn mô hình mô phỏng tốt nhất, một phương pháp BMA dựa trên cửa sổ biến thiên được giới thiệu vào mô hình quản lý để tận dụng tất cả các mô hình mô phỏng nhằm dự đoán nồng độ chloride. Với các mô hình bán phương sai khác nhau, các phân phối dẫn thủy lực có tương quan theo không gian được ước lượng bằng phương pháp tham số hóa tổng quát (GP) kết hợp các vùng Voronoi và các ước lượng kriging thông thường (OK). Trọng số mô hình của BMA được ước lượng bằng tiêu chí thông tin Bayes (BIC) và cửa sổ biến thiên trong ước lượng cực đại khả năng. Các mô hình mô phỏng sau đó được trọng số để dự đoán nồng độ chloride trong các ràng buộc của mô hình quản lý. Phương pháp này được thực hiện để quản lý sự xâm nhập nước mặn trong tầng chứa nước cát “1.500-foot” tại khu vực Baton Rouge, Louisiana. Mô hình quản lý nhằm mục tiêu đạt được các hoạt động phối hợp tối ưu của hệ thống hàng rào thủy lực và hệ thống khai thác nước mặn để giảm thiểu sự xâm nhập nước mặn. Một thuật toán di truyền (GA) được sử dụng để có được các chính sách bơm và khai thác tối ưu. Sử dụng các dự đoán của BMA, cần có các tỷ lệ bơm cao hơn và tỷ lệ khai thác lớn hơn để che phủ nhiều vi phạm ràng buộc hơn, điều này sẽ không xảy ra nếu chỉ sử dụng một mô hình tốt nhất.

Từ khóa

#quản lý nước ngầm #phương pháp trung bình mô hình Bayes #không chắc chắn về cấu trúc mô hình #mô phỏng #xâm nhập nước mặn #thuật toán di truyền

Tài liệu tham khảo

Abarca E, Vazquez-Sune E, Carrera J, Capino B, Gamez D, Batlle F (2006) Optimal design of measures to correct seawater intrusion. Water Resour Res 42(9):W09415. doi:10.1029/2005WR004524 Ahlfeld DP, Heidari M (1994) Applications of optimal hydraulic control to groundwater systems. J Water Resour Plan Manag - ASCE 120(3):350–365 Aly AH, Peralta RC (1999) Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour Res 35(8):2523–2532 Baú DA, Mayer AS (2008) Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution. J Contam Hydrol 100(1–2):30–46 Bayer P, Finkel M (2004) Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones. Water Resour Res 40(6):W06506. doi:10.1029/2003WR002675 Bayer P, Finkel M (2007) Optimization of concentration control by evolution strategies: formulation, application, and assessment of remedial solutions. Water Resour Res 43(2):W02410. doi:10.1029/2005WR004753 Bense VF, Person MA (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42(5):W05421. doi:10.1029/2005WR004480 Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298 Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29 Bray RB, Hanor JS (1990) Spatial variations in subsurface pore fluid properties in a portion of Southeast Louisiana: implications for regional fluid flow and solute transport. Gulf Coast Assoc Geol Soc Trans XL, 53–64 Byrd RH, Lu P, Nocedal J, Zhu C (1994) A limited memory algorithms for bound constrained optimization. Northwestern University, Department of Electrical Engineering and Computer Science, Technical Report NAM-08 CAGWCC (2002) Conserve ground water our greatest natural resource, Capital Area Ground Water Conservation Commission. Newsletter 27(3), 4 pp Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady-state conditions 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210 Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady-state conditions 3. Application to synthetic and field data. Water Resour Res 22(2):228–242 Carroll DL (1996) Chemical laser modeling with genetic algorithms. AIAA J 34(2):338–346 Chan N (1993) Robustness of the multiple realization method for stochastic hydraulic aquifer management. Water Resour Res 29(9):3159–3167 Dean S, Freer J, Beven K, Wade AJ, Butterfield D (2009) Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stoch Environ Res Risk Assess 23(7):991–1010 Dettinger MD, Wilson JL (1981) First-order analysis of uncertainty in numerical-models of groundwater flow Part 1. Mathematical development. Water Resour Res 17(1):149–161 Draper D (1995) Assessment and propagation of model uncertainty. J R Stat Soc Ser B 57(1):45–97 Eggleston JR, Rojstaczer SA, Peirce JJ (1996) Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set. Water Resour Res 32(5):1209–1222 Feyen L, Gorelick SM (2004) Reliable groundwater management in hydroecologically sensitive areas. Water Resour Res 40(7):W07408. doi:10.1029/2003WR003003 Feyen L, Gorelick SM (2005) Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resour Res 41(3):W03019. doi:10.1029/2003WR002901 Feyen L, Beven KJ, De Smedt F, Freer J (2001) Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations. Water Resour Res 37(3):625–638 Feyen L, Ribeiro PJ, De Smedt F, Diggle PJ (2003) Stochastic delineation of capture zones: classical versus Bayesian approach. J Hydrol 281(4):313–324 Foglia L, Mehl SW, Hill MC, Perona P, Burlando P (2007) Testing alternative ground water models using cross-validation and other methods. Ground Water 45(5):627–641 Georgakakos AP, Vlatsa DA (1991) Stochastic control of groundwater systems. Water Resour Res 27(8):2077–2090 Gorelick SM (1983) A review of distributed parameter groundwater-management modeling methods. Water Resour Res 19(2):305–319 Guan J, Aral MM (1999) Optimal remediation with well locations and pumping rates selected as continuous decision variables. J Hydrol 221(1–2):20–42 Guan JB, Kentel E, Aral MM (2008) Genetic algorithm for constrained optimization models and its application in groundwater resources management. J Water Resour Plan Manage - ASCE 134(1):64–72 Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00-92 Hassan AE, Bekhit HM, Chapman JB (2008) Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis. J Hydrol 362(1–2):89–109 Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Statistical Science 14(4):382–401 Hsieh PA, Freckleton JR (1993) Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model, U.S. Geological Survey, Open-File Report 92-477. Hyun Y, Lee KK (1998) Model identification criteria for inverse estimation of hydraulic parameters. Ground Water 36(2):230–239 Ko NY, Lee KK (2009) Convergence of deterministic and stochastic approaches in optimal remediation design of a contaminated aquifer. Stoch Env Res Risk Assess 23(3):309–318 Li X (2008) Bayesian model averaging on hydraulic conductivity estimation and groundwater head prediction. Ph.D. Dissertation, Louisiana State University, Baton Rouge, Louisiana Li X, Tsai FT-C (2009) Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod. Water Resour Res 45:W09403. doi:10.1029/2008WR007488 Madigan D, Andersson SA, Perlman MD, Volinsky CT (1996) Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics-Theory and Methods 25(11):2493–2519 Mahesha A (1996) Control of seawater intrusion through injection-extraction well system. J Irrig Drain Eng - ASCE 122(5):314–317 Mantoglou A (2003) Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks. Stoch Env Res Risk Assess 17(5):339–352 Mayer AS, Kelley CT, Miller CT (2002) Optimal design for problems involving flow and transport phenomena in saturated subsurface systems. Adv Water Resour 25(8–12):1233–1256 McKinney DC, Lin MD (1994) Genetic algorithm solution of groundwater-management models. Water Resour Res 30(6):1897–1906 Minsker BS, Shoemaker CA (1998) Dynamic optimal control of in situ bioremediation of ground water. J Water Resour Plan Manag - ASCE 124(3):149–161 Morgan DR, Eheart JW, Valocchi AJ (1993) Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resour Res 29(3):551–561 National Research Council (2001) Conceptual models of flow and transport in the fractured vadose zone. National Academic Press, Washington, DC Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk Assess 17(5):291–305 Oliver LD, Christakos G (1996) Boundary condition sensitivity analysis of the stochastic flow equation. Adv Water Resour 19(2):109–120 Ortiz CJ, Deutsch CV (2002) Calculation of uncertainty in the variogram. Math Geol 34(2):169–183 Park CH, Aral MM (2004) Multi-objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290(1–2):80–99 Poeter E, Anderson D (2005) Multimodel ranking and inference in ground water modeling. Ground Water 43(4):597–605 Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111–163 Rahman A, Tsai FT-C, White CD, Carlson DA, Willson CS (2008a) Geophysical data integration, stochastic simulation and significance analysis of groundwater responses using ANOVA in the Chicot Aquifer system, Louisiana, USA. Hydrogeol J 16(4):749–764 Rahman A, Tsai FT-C, White CD, Willson CS (2008b) Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis. J Hydrol Eng - ASCE 13(10):915–925 Ranjithan S, Eheart JW, Garrett JH (1993) Neural network based screening for groundwater reclamation under uncertainty. Water Resour Res 29(3):563–574 Reichard EG, Johnson TA (2005) Assessment of regional management strategies for controlling seawater intrusion. J Water Resour Plan Manag - ASCE 131(4):280–291 Russo D (1988) Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic-properties. Water Resour Res 24(3):453–459 Singh A, Minsker BS (2008) Uncertainty-based multiobjective optimization of groundwater remediation design. Water Resour Res 44(2):W02404. doi:10.1029/2005WR004436 Smalley JB, Minsker BS, Goldberg DE (2000) Risk-based in situ bioremediation design using a noisy genetic algorithm. Water Resour Res 36(10):3043–3052 Tolson BA, Shoemaker CA (2008) Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resour Res 44(4):W04411. doi:10.1029/2007WR005869 Tomaszewski DJ (1996) Distribution and movement of saltwater in aquifers in the Baton Rouge area, Louisiana, 1990–1992. Louisiana Department of Transportation and Development Water Resources Technical Report No. 59 Tsai FT-C (2006) Enhancing random heterogeneity representation by mixing the kriging method with the zonation structure. Water Resour Res 42(8):W08428. doi:08410.01029/02005WR004111 Tsai FT-C, Li X (2008a) Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resour Res 44(9):W09434. doi:10.1029/2007WR006576 Tsai FT-C, Li X (2008b) Multiple parameterization for hydraulic conductivity identification. Ground Water 46(6):851–864 Tsai FT-C, Yeh WW-G (2004) Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation. Water Resour Res 40:W10102. doi:10.1029/2003WR002893 Tung YK (1986) Groundwater management by chance-constrained model. J Water Resour Plan Manag - ASCE 112(1):1–19 USEPA (1997) Guiding principles for Monte Carlo analysis. U.S. Environmental Protection Agency, EPA/630/R-97/001 Wagner BJ (1995) Recent advances in simulation-optimization groundwater management modeling. Rev Geophys 33:1021–1028 Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23(7):1162–1174 Wagner BJ, Gorelick SM (1989) Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: from data to design. Water Resour Res 25(10):2211–2225 Wagner JM, Shamir U, Nemati HR (1992) Groundwater quality management under uncertainty: stochastic programming approaches and the value of information. Water Resour Res 28(5):1233–1246 Watkins DW, McKinney DC (1997) Finding robust solutions to water resources problems. J Water Resour Plan Manag - ASCE 123(1):49–58 Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res 40(5):W05113. doi:10.1029/2003WR002557 Yeh WW-G (1992) Systems analysis in groundwater planning and management. J Water Resour Plan Manag - ASCE 118(3):224–237 Zheng C, Wang P (1999) MT3DMS, A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems (Release DoD_3.50.A), Documentation and User’s Guide