Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alice T, Jose KK (2005) Marshall–Olkin logistic processes. STARS Int J 6:1–11
Almetwaly EM, Almongy HM (2018) Estimation of the generalized power Weibull distribution parameters using progressive censoring schemes. Int J Probab Stat 7(2):51–61
Basheer AM (2019a) Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Ann Data Sci. https://doi.org/10.1007/s40745-019-00229-0
Basheer AM (2019b) Alpha power inverse Weibull distribution with reliability application. J Taibah Univ Sci 13(1):423–432
EL-Sagheer RM (2018) Estimation of parameters of Weibull–Gamma distribution based on progressively censored data. Stat Pap 59(2):725–757
Ghitany ME (2005) Marshall Olkin extended Pareto and its application. Int J Appl Math 18:17–32
Ghitany ME, Al-Awadhi FA, Alkhalfan LA (2007) Marshall–Olkin extended Lomax distribution and its application to censored data. Commun Stat Theory Methods 36:1855–1866
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109
Kundu D, Howlader H (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Comput Stat Data Anal 54:1547–1558
Mahmoud MAW, EL-Sagheer RM, Abdalla SHM (2016) Inferences for new Weibull–Pareto distribution based on progressively type-II censored data. J Stat Appl Probab 5:501–514
Mahmoud MAW, EL-Sagheer RM, Mansour MMM (2017) On estimation of Weibull–Gamma parameters based on hybrid type-II censoring scheme. J Stat Appl Probab 6(1):123–131
Marshall AM, Olkin I (1997) A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families. Biometrika 84:641–652
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091
Nassar MM, Eissa FH (2004) Bayesian estimation for the exponentiated Weibull model. Commun Stat Theory Methods 33:2343–2362
Okasha HM, Kayid M (2016) A new family of Marshall–Olkin extended generalized linear exponential distribution. J Comput Appl Math 296:576–592
Okasha HM, El-Baz AH, Tarabia AMK, Basheer AM (2017) Extended inverse Weibull distribution with reliability application. J Egypt Math Soc 25(3):343–349
Okasha HM, El-Baz AH, Basheer AM (2020) On Marshall–Olkin extended inverse Weibull distribution: properties and estimation using type-II censoring data. J Stat Appl Probab Lett 7(1):9–21