Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach

Journal of the Indian Society for Probability and Statistics - Tập 21 Số 1 - Trang 247-257 - 2020
Hassan M. Okasha1, A. H. El-Baz2, Abdulkareem M. Basheer2
1Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Mathematics, Faculty of Science, Damietta University, Damietta, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alice T, Jose KK (2005) Marshall–Olkin logistic processes. STARS Int J 6:1–11

Almetwaly EM, Almongy HM (2018) Estimation of the generalized power Weibull distribution parameters using progressive censoring schemes. Int J Probab Stat 7(2):51–61

Basheer AM (2019a) Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Ann Data Sci. https://doi.org/10.1007/s40745-019-00229-0

Basheer AM (2019b) Alpha power inverse Weibull distribution with reliability application. J Taibah Univ Sci 13(1):423–432

EL-Sagheer RM (2018) Estimation of parameters of Weibull–Gamma distribution based on progressively censored data. Stat Pap 59(2):725–757

Ghitany ME (2005) Marshall Olkin extended Pareto and its application. Int J Appl Math 18:17–32

Ghitany ME, Al-Awadhi FA, Alkhalfan LA (2007) Marshall–Olkin extended Lomax distribution and its application to censored data. Commun Stat Theory Methods 36:1855–1866

Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

Kundu D, Howlader H (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Comput Stat Data Anal 54:1547–1558

Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

Mahmoud MAW, EL-Sagheer RM, Abdalla SHM (2016) Inferences for new Weibull–Pareto distribution based on progressively type-II censored data. J Stat Appl Probab 5:501–514

Mahmoud MAW, EL-Sagheer RM, Mansour MMM (2017) On estimation of Weibull–Gamma parameters based on hybrid type-II censoring scheme. J Stat Appl Probab 6(1):123–131

Marshall AM, Olkin I (1997) A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families. Biometrika 84:641–652

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

Nassar MM, Eissa FH (2004) Bayesian estimation for the exponentiated Weibull model. Commun Stat Theory Methods 33:2343–2362

Okasha HM, Kayid M (2016) A new family of Marshall–Olkin extended generalized linear exponential distribution. J Comput Appl Math 296:576–592

Okasha HM, El-Baz AH, Tarabia AMK, Basheer AM (2017) Extended inverse Weibull distribution with reliability application. J Egypt Math Soc 25(3):343–349

Okasha HM, El-Baz AH, Basheer AM (2020) On Marshall–Olkin extended inverse Weibull distribution: properties and estimation using type-II censoring data. J Stat Appl Probab Lett 7(1):9–21

Rastogi MK, Merovci F (2018) Bayesian estimation for parameters and reliability characteristic of the Weibull Rayleigh distribution. J King Saud Univ Sci 30:466–471