Battery materials for ultrafast charging and discharging

Nature - Tập 458 Số 7235 - Trang 190-193 - 2009
Byoungwoo Kang1, Gerbrand Ceder1
1Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Conway, B. E. Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc. 138, 1539–1548 (1991)

Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005)

Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–A939 (2001)

Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4533 (2004)

Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17, 5085–5092 (2005)

Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30–A32 (2004)

Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–128 (2002)

Ravet, N. C. Y., Magnan, J. F., Besner, S., Gauthier, M. & Armand, M. Electroactivity of natural and synthetic triphylite. J. Power Sources 97–8, 503–507 (2001)

Herle, P. S., Ellis, B., Coombs, N. & Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater. 3, 147–152 (2004)

Delacourt, C., Poizot, P., Levasseur, S. & Masquelier, C. Size effects on carbon-free LiFePO4 powders. Electrochem. Solid State Lett. 9, A352–A355 (2006)

Kim, D. H. & Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006)

Chen, G. Y., Song, X. Y. & Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295–A298 (2006)

Wang, B., Kwak, B. S., Sales, B. C. & Bates, J. B. Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297–306 (1995)

Sayer, M. & Mansingh, A. Transport properties of semiconducting phosphate glasses. Phys. Rev. B 6, 4629–4643 (1972)

Mogus-Milankovic, A., Santic, A., Karbulut, M. & Day, D. E. Study of electrical properties of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses by impedance spectroscopy. II. J. Non-Cryst. Solids 330, 128–141 (2003)

Zhou, H. S., Li, D. L., Hibino, M. & Honma, I. A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Edn Engl. 44, 797–802 (2005)

Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li-Fe-P-O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008)

Martin, S. W. Ionic-conduction in phosphate-glasses. J. Am. Ceram. Soc. 74, 1767–1784 (1991)

Sobha, K. C. & Rao, K. J. Investigation of phosphate glasses with the general formula AxByP3O12 where A = Li, Na or K and B = Fe, Ga, Ti, Ge, V or Nb. J. Non-Cryst. Solids 201, 52–65 (1996)

Kim, D.-K. et al. Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries. J. Power Sources 159, 237–240 (2006)

Ellis, B. et al. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion/electron transport. Faraday Discuss. 134, 119–141 (2007)

Rho, Y. H., Nazar, L. F., Perry, L. & Ryan, D. Surface chemistry of LiFePO4 studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc. 154, A283–A289 (2007)

Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997)

Morgan, W. E., Stec, W. J. & Vanwazer, J. R. Inner-orbital photoelectron spectroscopy of alkali-metal halides, perchlorates, phosphates, and pyrophosphates. J. Am. Chem. Soc. 95, 751–755 (1973)

Okubo, M. et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)

Wang, L., Zhou, F., Meng, Y. S. & Ceder, G. First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phys. Rev. B 76, 165435 (2007)

Dominko, R., Gaberscek, M., Bele, A., Mihailovic, D. & Jamnik, J. Carbon nanocoatings on active materials for Li-ion batteries. J. Eur. Ceram. Soc. 27, 909–913 (2007)

Gaberscek, M., Dominko, R., Bele, M., Remskar, M. & Jamnik, J. Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores. Solid State Ionics 177, 3015–3022 (2006)