BathyNet: A Deep Neural Network for Water Depth Mapping from Multispectral Aerial Images

Gottfried Mandlburger1, Michael Kölle2, Hannes Nübel2, Uwe Soergel2
1Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstr. 10-12, 1040, Vienna, Austria
2Institute for Photogrammetry, University of Stuttgart, Geschwister-Scholl-Str. 24D, 70174, Stuttgart, Germany

Tóm tắt

AbstractBesides airborne laser bathymetry and multimedia photogrammetry, spectrally derived bathymetry provides a third optical method for deriving water depths. In this paper, we introduce BathyNet, an U-net like convolutional neural network, based on high-resolution, multispectral RGBC (red, green, blue, coastal blue) aerial images. The approach combines photogrammetric and radiometric methods: Preprocessing of the raw aerial images relies on strict ray tracing of the potentially oblique image rays, considering the intrinsic and extrinsic camera parameters. The actual depth estimation exploits the radiometric image content in a deep learning framework. 3D water surface and water bottom models derived from simultaneously captured laser bathymetry point clouds serve as reference and training data for both image preprocessing and actual depth estimation. As such, the approach highlights the benefits of jointly processing data from hybrid active and passive imaging sensors. The RGBC images and laser data of four groundwater supplied lakes around Augsburg, Germany, captured in April 2018 served as the basis for testing and validating the approach. With systematic depth biases less than 15 cm and a standard deviation of around 40 cm, the results satisfy the vertical accuracy limit Bc7 defined by the International Hydrographic Organization. Further improvements are anticipated by extending BathyNet to include a simultaneous semantic segmentation branch.

Từ khóa


Tài liệu tham khảo

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. http://tensorflow.org/. Software available from tensorflow.org

Agrafiotis P, Skarlatos D, Georgopoulos A, Karantzalos K (2019) DepthLearn: Learning to Correct the Refraction on Point Clouds Derived from Aerial Imagery for Accurate Dense Shallow Water Bathymetry Based on SVMs-Fusion with LiDAR Point Clouds. Remote Sensing 11(19): . https://doi.org/10.3390/rs11192225.https://www.mdpi.com/2072-4292/11/19/2225

Agrafiotis P, Karantzalos K, Georgopoulos A, Skarlatos D (2020) Correcting image refraction: towards accurate aerial image-based bathymetry mapping in shallow waters. Remote Sens. https://doi.org/10.3390/rs12020322. https://www.mdpi.com/2072-4292/12/2/322

Bergsma EWJ, Conley DC, Davidson MA, Hare TJ, Almar R (2019) Storm event to seasonal evolution of nearshore bathymetry derived from shore-based video imagery. Remote Sens. https://doi.org/10.3390/rs11050519.https://www.mdpi.com/2072-4292/11/5/519

Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92(3):502–520. https://doi.org/10.1016/j.ecss.2011.02.007

Bué I, Catalão J, Semedo Á (2020) Intertidal bathymetry extraction with multispectral images: a logistic regression approach. Remote Sens. https://doi.org/10.3390/rs12081311. https://www.mdpi.com/2072-4292/12/8/1311

Cahalane C, Magee A, Monteys X, Casal G, Hanafin J, Harris P (2019) A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sens Environ 233: https://doi.org/10.1016/j.rse.2019.111414

Carrivick JL, Smith MW (2019) Fluvial and aquatic applications of Structure from Motion photogrammetry and unmanned aerial vehicle/drone technology. WIREs Water 6(1):e1328. https://doi.org/10.1002/wat2.1328. https://onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1328

Chollet F et al (2015) Keras. https://github.com/fchollet/keras

Dickens K, Armstrong A (2019) Application of machine learning in satellite derived bathymetry and coastline detection. SMU Data Sci Rev 2(1)

Dietrich JT (2016) Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf Process Landf 42(2):355–364. https://doi.org/10.1002/esp.4060. https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4060

Dumoulin V, Visin F (2018) A guide to convolution arithmetic for deep learning. eprint:1603.07285

Duplančić Leder T, Leder N, Peroš J (2019) Satellite derived bathymetry survey method—example of Hramina Bay. ACM Trans Math Softw 8:99–108

Effler SW (1988) Secchi disc transparency and turbidity. J Environ Eng 114(6):1436–1447. https://doi.org/10.1061/(ASCE)0733-9372(1988)114:6(1436)

Eugenio F, Marcello J, Martin J, Rodríguez-Esparragón D (2017) Benthic habitat mapping using multispectral high-resolution imagery: evaluation of shallow water atmospheric correction techniques. Sensors. https://doi.org/10.3390/s17112639

European Union (1992) Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora. Off J Eur Commun (OJL) L 206(35)

European Union (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action the field of water policy. Off J Eur Commun (OJL) L 327(173): 1–72

European Union (2007) Directive 2007/60/EC of the European Parliament and European Council of October 2007 on the assessment and management of flood risks . Off J Eur Commun (OJL) 288(27)

Frazier PS, Page KJ (2000) Water body detection and delineation with Landsat TM data. PE&RS Photogramm Eng Remote Sens 66(12):1461–1467

Gao J (2009) Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress Phys Geogr Earth Environ 33(1):103–116. https://doi.org/10.1177/0309133309105657

Gentile V, Mróz M, Spitoni M, Lejot J, Piógay H, Demarchi L (2016) Bathymetric mapping of shallow rivers with UAV hyperspectral data. In: Proceedings of the fifth international conference on telecommunications and remote sensing—volume 1: ICTRS, pp 43–49. INSTICC, SciTePress. https://doi.org/10.5220/0006227000430049

Glira P, Pfeifer N, Mandlburger G (2016) Rigorous strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors. Photogramm Eng Remote Sens 82(12):945–954. https://doi.org/10.14358/PERS.82.12.945. Special Issue on Mobile Mapping Technologies

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. Adaptive computation and machine learning. MIT Press, Cambridge. http://www.deeplearningbook.org

Guenther GC, Cunningham AG, Laroque PE, Reid DJ (2000) Meeting the accuracy challenge in airborne lidar bathymetry. In: Proceedings of the 20th EARSeL symposium: workshop on lidar remote sensing of land and sea. Dresden, Germany

Heblinski J, Schmieder K, Heege T, Agyemang TK, Sayadyan H, Vardanyan L (2011) High-resolution satellite remote sensing of littoral vegetation of lake sevan (armenia) as a basis for monitoring and assessment. Hydrobiologia 661:97–111. https://doi.org/10.1007/s10750-010-0466-6

Hernandez WJ, Armstrong RA (2016) Deriving bathymetry from multispectral remote sensing data. J Mar Sci Eng. https://doi.org/10.3390/jmse4010008. https://www.mdpi.com/2077-1312/4/1/8

Hilldale R, Raff D (2008) Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf Process Landf 33(5):773–783. https://doi.org/10.1002/esp.1575

Hodúl M, Bird S, Knudby A, Chénier R (2018) Satellite derived photogrammetric bathymetry. ISPRS J Photogramm Remote Sens 142:268–277. https://doi.org/10.1016/j.isprsjprs.2018.06.015

IHO: S-44 (2020) Standards for Hydrographic Surveys. Standard 6th ed., International Hydrographic Organization, Monaco. https://iho.int/uploads/user/pubs/Drafts/S-44_Edition_6.0.0-Final.pdf

Kasvi E, Salmela J, Lotsari E, Kumpula T, Lane S (2019) Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology 333:180–197. https://doi.org/10.1016/j.geomorph.2019.02.017

Kogut T, Bakuła (2019) Improvement of full waveform airborne laser bathymetry data processing based on waves of neighborhood points. Remote Sens. https://doi.org/10.3390/rs11101255. https://www.mdpi.com/2072-4292/11/10/1255

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

Legleiter CJ, Fosness RL (2019) Defining the limits of spectrally based bathymetric mapping on a large river. Remote Sens. https://doi.org/10.3390/rs11060665. https://www.mdpi.com/2072-4292/11/6/665

Legleiter CJ, Harrison LR (2019) Remote sensing of river bathymetry: evaluating a range of sensors, platforms, and algorithms on the Upper Sacramento River, California, USA. Water Resour Res 55(3):142–2169. https://doi.org/10.1029/2018WR023586. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023586

Legleiter CJ, Roberts DA, Lawrence RL (2009) Spectrally based remote sensing of river bathymetry. Earth Surf Process Landf 34(8):1039–1059. https://doi.org/10.1002/esp.1787

Li R, Liu W, Yang L, Sun S, Hu W, Zhang F, Li W (2018) DeepUNet: a deep fully convolutional network for pixel-level sea-land segmentation. IEEE J Select Top Appl Earth Observ Remote Sens 11(11):3954–3962. https://doi.org/10.1109/JSTARS.2018.2833382

Liu S, Wang L, Liu H, Su H, Li X, Zheng W (2018) Deriving bathymetry from optical images with a localized neural network algorithm. IEEE Trans Geosci Remote Sens 56(9):5334–5342. https://doi.org/10.1109/TGRS.2018.2814012

Lyzenga DR (1978) Passive remote sensing techniques for mapping water depth and bottom features. Appl Opt 17(3):379–383. https://doi.org/10.1364/AO.17.000379

Lyzenga DR, Malinas NP, Tanis FJ (2006) Multispectral bathymetry using a simple physically based algorithm. IEEE Trans Geosci Remote Sens 44(8):2251–2259. https://doi.org/10.1109/TGRS.2006.872909

Ma Y, Xu N, Liu Z, Yang B, Yang F, Wang XH, Li S (2020) Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens Environ 250: https://doi.org/10.1016/j.rse.2020.112047

Maas HG (2015) On the accuracy potential in underwater/multimedia photogrammetry. Sensors 15(8):18140–18152. https://doi.org/10.3390/s150818140. http://www.mdpi.com/1424-8220/15/8/18140

Makboul O, Negm A, Mesbah S, Mohasseb M (2017) Performance assessment of ANN in estimating remotely sensed extracted bathymetry. Case study: eastern harbor of Alexandria. Procedia Eng 181:912–919. 10th International Conference Interdisciplinarity in Engineering, INTER-ENG (2016) 6–7 October 2016, Tirgu Mures. Romania. https://doi.org/10.1016/j.proeng.2017.02.486

Mandlburger G (2019) Through-water dense image matching for shallow water bathymetry. Photogramm Eng Remote Sens. https://doi.org/10.14358/PERS.85.6.445

Mandlburger G (2020) A review of airborne laser bathymetry for mapping of inland and coastal waters. J Appl Hydrogr 116:6–15. https://doi.org/10.23784/HN116-01

Mandlburger G, Pfennigbauer M, Pfeifer N (2013) Analyzing near water surface penetration in laser bathymetry—a case study at the River Pielach. In: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, vol 2. https://doi.org/10.5194/isprsannals-II-5-W2-175-2013

Mandlburger G, Hauer C, Wieser M, Pfeifer N (2015) Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—a case study at the Pielach River. Remote Sens 7(5):6160–6195. https://doi.org/10.3390/rs70506160. http://www.mdpi.com/2072-4292/7/5/6160

Mandlburger G, Kremer J, Steinbacher F, Baran R (2018) Investigating the use of coastal blue imagery for bathymetric mapping of inland water bodies. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS Archives, 1/42. https://doi.org/10.5194/isprs-archives-XLII-1-275-2018

Misra A, Ramakrishnan B (2020) Assessment of coastal geomorphological changes using multi-temporal satellite-derived bathymetry. Continent Shelf Res 207: https://doi.org/10.1016/j.csr.2020.104213

Misra A, Vojinovic Z, Ramakrishnan B, Luijendijk A, Ranasinghe R (2018) Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. Int J Remote Sens 39(13):4431–4450. https://doi.org/10.1080/01431161.2017.1421796

Muzirafuti A, Barreca G, Crupi A, Faina G, Paltrinieri D, Lanza S, Randazzo G (2020) The contribution of multispectral satellite image to shallow water bathymetry mapping on the Coast of Misano Adriatico, Italy. J Mar Sci Eng. https://doi.org/10.3390/jmse8020126. https://www.mdpi.com/2077-1312/8/2/126

Parrish CE, Dijkstra JA, O’Neil-Dunne JPM, McKenna L, Pe’eri S (2016) Post-Sandy Benthic Habitat Mapping Using New Topobathymetric Lidar Technology and Object-Based Image Classification. Journal of Coastal Research pp 200–208. https://doi.org/10.2112/SI76-017

Parrish CE, Magruder LA, Neuenschwander AL, Forfinski-Sarkozi N, Alonzo M, Jasinski M (2019) Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. https://doi.org/10.3390/rs11141634. https://www.mdpi.com/2072-4292/11/14/1634

Pfeifer N, Mandlburger G (2018) Lidar data filtering and Digital Terrain Model generation. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning—principles and processing, 2nd edn. CRC Press, Boca Raton, pp 349–378

Pfeifer N, Mandlburger G, Otepka J, Karel W (2014) OPALS—a framework for Airborne Laser Scanning data analysis. Comput Environ Urban Syst 45:125–136. https://doi.org/10.1016/j.compenvurbsys.2013.11.002. http://www.sciencedirect.com/science/article/pii/S0198971513001051

Philpot W (2019) Airborne Laser Hydrography II. Cornell University Library (eCommons), Coernell. https://doi.org/10.7298/jxm9-g971. https://ecommons.cornell.edu/handle/1813/66666

Purkis SJ, Gleason ACR, Purkis CR, Dempsey AC, Renaud PG, Faisal M, Saul S, Kerr JM (2019) High-resolution habitat and bathymetry maps for 65,000 sq km of Earth’s remotest coral reefs. Coral Reefs 38(3):467–488. https://doi.org/10.1007/s00338-019-01802-y

Rakhlin A, Davydow A, Nikolenko S (2018) Land cover classification from satellite imagery with U-Net and Lovász-Softmax loss. In; 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 257–2574

Rasquin C, Seiffert R, Wachler B, Winkel N (2020) The significance of coastal bathymetry representation for modelling the tidal response to mean sea level rise in the german bight. Ocean Sci 16(1):31–44. https://doi.org/10.5194/os-16-31-2020. https://os.copernicus.org/articles/16/31/2020/

Ressl C, Brockmann H, Mandlburger G (2016) Pfeifer N (2016) Dense Image matching vs airborne laser scanning–comparison of two methods for deriving terrain models. Photogrammetrie Fernerkundung Geoinf 2:57–73. https://doi.org/10.1127/pfg/2016/0288

Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention—MICCAI 2015. Springer, Cham, pp 234–241

Rossi L, Mammi I, Pelliccia F (2020) UAV-derived multispectral bathymetry. Remote Sens. https://doi.org/10.3390/rs12233897. https://www.mdpi.com/2072-4292/12/23/3897

Sagawa T, Yamashita Y, Okumura T, Yamanokuchi T (2019) Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens. https://doi.org/10.3390/rs11101155. https://www.mdpi.com/2072-4292/11/10/1155

Salameh E, Frappart F, Almar R, Baptista P, Heygster G, Lubac B, Raucoules D, Almeida LP, Bergsma EWJ, Capo S, De Michele M, Idier D, Li Z, Marieu V, Poupardin A, Silva PA, Turki I, Laignel B (2019) Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: a review. Remote Sens. https://doi.org/10.3390/rs11192212. https://www.mdpi.com/2072-4292/11/19/2212

Sam L, Prusty G, Gahlot N (2018) Evaluation of optical remote sensing-based shallow water bathymetry for recursive mapping. Geocarto Int 33(7):737–753. https://doi.org/10.1080/10106049.2017.1299800

Schmohl S, Sörgel U (2019) Submanifold sparse convolutional networks for semantic segmentation of large-scale ALS point clouds. ISPRS Ann IV-2/W5:77–84. https://doi.org/10.5194/isprs-annals-IV-2-W5-77-2019. https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W5/77/2019/

Slocum RK, Parrish CE, Simpson CH (2020) Combined geometric-radiometric and neural network approach to shallow bathymetric mapping with uas imagery. ISPRS J Photogramm Remote Sens 169:351–363. https://doi.org/10.1016/j.isprsjprs.2020.09.002

Song Y, Niemeyer J, Ellmer W, Soergel U, Heipke C (2015) Comparison of three airborne laser bathymetry data sets for monitoring the German Baltic Sea Coast. https://doi.org/10.1117/12.2194960

Sonogashira M, Shonai M, Iiyama M (2020) High-resolution bathymetry by deep-learning-based image superresolution. PLOS One 15(7):1–19. https://doi.org/10.1371/journal.pone.0235487

Starek MJ, Giessel J (2017) Fusion of uas-based structure-from-motion and optical inversion for seamless topo-bathymetric mapping. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS), pp 2999–3002. https://doi.org/10.1109/IGARSS.2017.8127629

Strecha C, Küng O, Fua P (2012) Automatic mapping from ultra-light uav imagery. In: EuroCOW, 2012, Barcelona, Spain. http://infoscience.epfl.ch/record/175351

Stumpf RP, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr 48(1part2):547–556

Szeliski R (2011) Computer vision: algorithms and applications. Springer, London. https://doi.org/10.1007/978-1-84882-935-0

Van Rossum G, Drake Jr FL (1995) Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam

Wald I, Woop S, Benthin C, Johnson GS, Ernst M (2014) Embree: a kernel framework for efficient CPU ray tracing. ACM Trans Gr. doi 10(1145/2601097):2601199

Wang G, Wu M, Wei X, Song H (2020) Water Identification from High-Resolution Remote Sensing Images Based on Multidimensional Densely Connected Convolutional Neural Networks. Remote Sens. https://doi.org/10.3390/rs12050795. https://www.mdpi.com/2072-4292/12/5/795

Westaway RM, Lane SN, Hicks DM (2001) Remote sensing of clear-water, shallow, gravel-bed rivers using digital photogrammetry. Photogramm Eng Remote Sens 67(11):1271–1281

Westfeld P, Maas HG, Richter K, Weiß R (2017) Analysis and correction of ocean wave pattern induced systematic coordinate errors in airborne LiDAR bathymetry. ISPRS J Photogramm Remote Sens 128:314–325. https://doi.org/10.1016/j.isprsjprs.2017.04.008

Zhang X, Ma Y, Zhang J (2020) Shallow water bathymetry based on inherent optical properties using high spatial resolution multispectral imagery. Remote Sens. https://doi.org/10.3390/rs12183027

Zhou DX (2020) Universality of deep convolutional neural networks. Appl Comput Harmon Anal 48(2):787–794. https://doi.org/10.1016/j.acha.2019.06.004