Khảo sát đồng phân hủy kỵ khí theo lô của chất thải thực phẩm và bùn: phương pháp mô hình hóa quyết định đa tiêu chí (MCDM)

Springer Science and Business Media LLC - Tập 2 - Trang 1-11 - 2020
Nupur Kesharwani1, Samir Bajpai1
1Department of Civil Engineering, National Institute of Technology, Raipur, India

Tóm tắt

Nghiên cứu hiện tại điều tra ứng dụng của Mô hình hóa Quyết định Đa Tiêu Chí (MCDM) vào quá trình đồng phân hủy kỵ khí theo lô giữa chất thải thực phẩm (FW) và bùn hầm cầu tươi (STS) nhằm đạt được sản lượng ổn định. Thí nghiệm theo lô được thực hiện ở nhiệt độ 37 ± 2 °C. Các tỷ lệ khác nhau giữa FW và STS (FW: STS: 100:0; 75:25; 60:40; 50:50; 25:75; 0:100) được áp dụng dựa trên cơ sở chất rắn dễ bay hơi (VS) như một chiến lược đồng phân hủy trong thời gian 90 ngày. Kết quả cho thấy rằng, trong thí nghiệm, quá trình đồng phân hủy đơn của FW cho sản lượng biogas tối đa (544 ± 65 mL/g VS) tiếp theo bởi tỷ lệ hòa trộn 75:25 (FW: STS). Tuy nhiên, đồng phân hủy đơn của STS chỉ cho 150 ± 15 mL/g VS sản lượng biogas và cũng có tác động tiêu cực đến quá trình đồng phân hủy với FW đối với mỗi tỷ lệ hòa trộn dựa trên VS do STS chứa nhiều khoáng chất. MCDM cho thấy rằng FW là lựa chọn tốt nhất trong số các tỷ lệ hòa trộn khác với STS khi xem xét pH, nhu cầu oxy hóa hóa học, sự giảm VS, độ kiềm, C/N và sản lượng biogas như đầu ra.

Từ khóa

#đồng phân hủy kỵ khí #chất thải thực phẩm #bùn hầm cầu #mô hình hóa quyết định đa tiêu chí #sản lượng biogas

Tài liệu tham khảo

Venkateshkumar R, Shanmugam S, Veerappan AR (2019) Experimental investigation on the effect of anaerobic co-digestion of cotton seed hull with cow dung. Biomass Convers Bioref 1–8. https://doi.org/10.1007/s13399-019-00523-0 Paritosh K, Mathur S, Pareek N, Vivekanand V (2018) Feasibility study of waste (d) potential: co-digestion of organic wastes, synergistic effect and kinetics of biogas production. Int J Env Sci Technol 15:1009–1018 Abudi ZN, Hu Z, Sun N, Xiao B, Rajaa N, Liu C, Guo D (2016) Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): influence of TWAS and RS pretreatment and mixing ratio. Energy 107:131–140 Bhakov ZK, Korazbekova KU, Lakhanova KM (2014) The kinetics of biogas production from codigestion of cattle manure. Pak J Biol Sci 17:1023–1029 Paritosh K, Yadav M, Mathur S, Balan V, Liao W, Pareek N, Vivekanand V (2018) Organic fraction of municipal solid waste: overview of treatment methodologies to enhance anaerobic biodegradability. Front Energy Res 6:75 FAO (2012) Towards the future, we want: end hunger and make the transition to sustainable agricultural and food systems. Food and Agriculture Organization of the United Nations, Rome Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Impe JV, Dewil R (2011) Anaerobic digestion in global bio-energy production—potential and research challenges. Renew Sustain Energy Rev 15:4295–4301 Koch K, Drewes JE (2014) Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data. Appl Energy 120:11–15 Koch K, Plabst M, Schmidt A, Helmreich B, Drewes JE (2016) Co-digestion of food waste in a municipal wastewater treatment plant: comparison of batch tests and full-scale experiences. Waste Manag 47:28–33 Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM (2012) Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag 32:1821–1825 El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101:4021–4028 Harder R, Wielemaker R, Larsen TA, Zeeman G, Öberg G (2019) Recycling nutrients contained in human excreta to agriculture: pathways, processes, and products. Crit Rev Env Sci Technol 49:695–743 Paritosh K, Pareek N, Chawade A, Vivekanand V (2019) prioritization of solid concentration and temperature for solid state anaerobic digestion of pearl millet straw employing multi-criteria assessment tool. Sci Rep 9:1–11 Yang Z, Wang W, Zhang S, Ma Z, Anwar N, Liu G, Zhang R (2017) Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions. Water Sci Technol 75:1607–1616 Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol 102:9447–9455 Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934 APHA (1989) Standard methods for examination of water and waste water, 17th edn. American Public Health Association, Washington Zirkler D, Peters A, Kaupenjohann M (2014) Elemental composition of biogas residues: variability and alteration during anaerobic digestio. Biomass Bioenerg 67:89–98 Black CA (1965) Methods of soil analysis. Part I. American Society of Agronomy, Madison, p 1572 Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter, methods of soil analysis Part 3—chemical methods 961–1010. https://doi.org/10.2136/sssabookser5.3.c34 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917 Ludwig TG, Goldberg HJV (1956) The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J Dental Res 35:90–94 Bo Z, Pin-Jing H (2014) Performance assessment of two-stage anaerobic digestion of kitchen wastes. Environ Technol 35:1277–1285 Tembhurkar AR, Mhaisalkar VA (2007) Studies on hydrolysis and acidogenesis of kitchen waste in two phase anaerobic digestion. JIPHE, India, p 2 Matheri AN, Belaid M, Seodigeng T, Ngila JC (2016) The role of trace elements on anaerobic co-digestion in biogas production. In: Proceedings of the World Congress on Engineering, London, UK Weiland P (2006) Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci 6:302–309 Speece RE, Parkin GF (1987) Nutrient requirements for anaerobic digestion. Biotechnological advances in processing municipal wastes for fuels and chemicals. Noyes Data Corporation, Park Ridge New Jersey Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energy 77:467–472 Davis CD, Greger JL (1992) Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr 55:747–752 Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264 Deepanraj B, Sivasubramanian V, Jayaraj S (2015) Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotox Environ Safe 121:100–104 Gandhi P, Paritosh K, Pareek N, Mathur S, Lizasoain J, Gronauer A, Bauer A, Vivekanand V (2018) Multicriteria decision model and thermal pretreatment of hotel food waste for robust output to biogas: case study from city of Jaipur. BioMed Res Int, India