Basis adaptation in homogeneous chaos spaces

Journal of Computational Physics - Tập 259 - Trang 304-317 - 2014
Ramakrishna Tipireddy1, Roger Ghanem2
1Computational Mathematics Department, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, United States#TAB#
2210 KAP Hall, University of Southern California, Los Angeles, CA 90089, United States#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ghanem, 1991

Holden, 1996

Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826

Doostan, 2009, A least-squares approximation of partial differential equations with high-dimensional random inputs, J. Comput. Phys., 228, 4332, 10.1016/j.jcp.2009.03.006

Doostan, 2011, A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 230, 3015, 10.1016/j.jcp.2011.01.002

Schwab, 2011, Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer., 20, 291, 10.1017/S0962492911000055

Doostan, 2007, Stochastic model reduction for chaos representations, Comput. Methods Appl. Mech. Eng., 196, 3951, 10.1016/j.cma.2006.10.047

Zwanzig, 1961, Memory effects in irreversible thermodynamics, Phys. Rev., 124, 983, 10.1103/PhysRev.124.983

Mori, 1965, Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33, 423, 10.1143/PTP.33.423

H. Hertz, The Principles of Mechanics; Presented in a New Form, Forgotten Books, 1899.

Grabert, 1982

Chorin, 2000, Optimal prediction and the Mori–Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97, 2968, 10.1073/pnas.97.7.2968

Hijón, 2010, Mori–Zwanzig formalism as a practical computational tool, Faraday Discuss., 144, 301, 10.1039/B902479B

Stinis

Kubo, 1962, Generalized cumulant expansion method, J. Phys. Soc. Jpn., 17, 1100, 10.1143/JPSJ.17.1100

Kladko, 1998, On the properties of cumulant expansions, Int. J. Quant. Chem., 66, 377, 10.1002/(SICI)1097-461X(1998)66:5<377::AID-QUA4>3.0.CO;2-S

Gear, 2003, Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators to perform system-level analysis, Commun. Math. Sci., 1, 715, 10.4310/CMS.2003.v1.n4.a5

Saltelli, 1995, About the use of rank transformation in sensitivity analysis of model output, Reliab. Eng. Syst. Saf., 50, 225, 10.1016/0951-8320(95)00099-2

Rabitz, 1999, Efficient input–output model representations, Comput. Phys. Commun., 117, 11, 10.1016/S0010-4655(98)00152-0

Cao, 2009, ANOVA expansions and efficient sampling methods, Int. J. Numer. Anal. Model., 6, 256

Allaire, 2010, Surrogate modeling for uncertainty assessment with application to aviation environmental system models, AIAA J., 48, 1791, 10.2514/1.J050247

Gao, 2011, Efficient solution of ordinary differential equations with high-dimensional parametrized uncertainty, Commun. Comput. Phys., 10, 253, 10.4208/cicp.090110.080910a

Janson, 1999