Basement membranes: structure, assembly and role in tumour angiogenesis

Nature Reviews Cancer - Tập 3 Số 6 - Trang 422-433 - 2003
Raghu Kalluri1
1Department of Medicine, Center for Matrix Biology, Dana 514, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, 02215, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vracko, R. Significance of basal lamina for regeneration of injured lung. Virchows Arch. A. Pathol. Pathol. Anat. 355, 264–274 (1972).

Vracko, R. & Strandness, D. E. Jr. Basal lamina of abdominal skeletal muscle capillaries in diabetics and nondiabetics. Circulation 35, 690–700 (1967).

Vracko, R. & Benditt, E. P. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J. Cell Biol. 55, 406–419 (1972).

Vracko, R. & Benditt, E. P. Capillary basal lamina thickening. Its relationship to endothelial cell death and replacement. J. Cell Biol. 47, 281–285 (1970).

Vracko, R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am. J. Pathol. 77, 314–346 (1974). This paper, along with references 1–4 and 33, was important in establishing the structure of the basement membrane as a distinct structure, by use of the transmission electron microscope.

Ruben, G. C. & Yurchenco, P. D. High resolution platinum-carbon replication of freeze-dried basement membrane. Microsc. Res. Tech. 28, 13–28 (1994).

Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

Timpl, R. Structure and biological activities of basement membrane proteins. Eur. J. Biochem. 180, 487–502 (1989).

Timpl, R. Recent advances in the biochemistry of glomerular basement membrane. Kidney Int. 30, 293 (1986).

Paulsson, M. Basement membrane proteins: structure, assembly, and cellular interaction. Crit. Rev. Biochem. Mol. Biol. 27, 93–127 (1992).

Schittny, J. C. & Yurchenco, P. D. Basement membranes: molecular organization and function in development and disease. Curr. Opin. Cell Biol. 1, 983–988 (1989).

Aumailley, M. & Timpl, R. Attachment of cells to basement membrane collagen type IV. J. Cell Biol. 103, 1569 (1986).

Yurchenco, P. D., Tsilibary, E. C., Charonis, A. S. & Furthmayr, H. Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34, 93–102 (1986).

Yurchenco, P. D. & Ruben, G. C. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105, 2559–2568 (1987).

Yurchenco, P. D., Smirnov, S. & Mathus, T. Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol. 69, 111–144 (2002). Highlights the use of recombinant laminin in assembly studies. Along with references 13 and 14, it provides the most compelling evidence of how laminins and collagens assemble.

Cheng, Y. S., Champliaud, M. F., Burgeson, R. E., Marinkovich, M. P. & Yurchenco, P. D. Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31525–31532 (1997).

Yurchenco, P. D. & O'Rear, J. J. Basal lamina assembly. Curr. Opin. Cell Biol. 6, 674–681 (1994).

Yurchenco, P. D. & O'Rear, J. J. Basement membrane assembly. Methods Enzymol. 245, 489–518 (1994).

Yurchenco, P. D. & Schittny, J. C. Molecular architecture of basement membranes. FASEB J. 4, 1577–1590 (1990).

Barnard, K., Burgess, S. A., Carter, D. A. & Woolley, D. M. Three-dimensional structure of type IV collagen in the mammalian lens capsule. J. Struct. Biol. 108, 6–13 (1992).

Yurchenco, P. D. & Furthmayr, H. Self-assembly of basement membrane collagen. Biochemistry 23, 1839–1850 (1984).

Yurchenco, P. D., Tsilibary, E. C., Charonis, A. S. & Furthmayr, H. Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34, 93–102 (1986).

Hudson, B. G., Reeders, S. T. & Tryggvason, K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J. Biol. Chem. 268, 26033–26036 (1993). A solid review in the area of type IV collagen biology and pathology.

Barker, D. F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

Hudson, B. G. et al. The pathogenesis of Alport syndrome involves type IV collagen molecules containing the alpha 3(IV) chain: evidence from anti-GBM nephritis after renal transplantation. Kidney Int. 42, 179–187 (1992).

Cosgrove, D. et al. Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

Cosgrove, D. et al. Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev. 10, 2981–2992 (1996).

Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997). A key paper that illustrates how structural instability of BMs can lead to disease pathogenesis.

Kalluri, R. Goodpasture syndrome. Kidney Int. 55, 1120–1122 (1999).

Kalluri, R., Danoff, T. M., Okada, H. & Neilson, E. G. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.. J. Clin. Invest. 100, 2263–2275 (1997).

Kalluri, R., Gattone, V. H. Jr, Noelken, M. E. & Hudson, B. G. The α3(IV) chain of type IV collagen induces autoimmune Goodpasture Syndrome. Proc. Natl Acad. Sci. USA 91, 6201–6205 (1994).

Butkowski, R. J., Langeveld, J. P., Wieslander, J., Hamilton, J. & Hudson, B. G. Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J. Biol. Chem. 262, 7874–7877 (1987). First paper to identify the α3 chain of type IV collagen, a precursor to tumstatin.

Vracko, R., Thorning, D. & Huang, T. W. Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus. Am. Rev. Respir. Dis. 120, 973–983 (1979).

Thorning, D. & Vracko, R. Renal glomerular basal lamina scaffold: embryologic development, anatomy, and role in cellular reconstruction of rat glomeruli injured by freezing and thawing. Lab. Invest. 37, 105–119 (1977).

Orkin, R. W. et al. A murine tumor producing a matrix of basement membrane. J. Exp. Med. 145, 204–220 (1977).

Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

Baron-Van Evercooren, A., Gansmuller, A., Gumpel, M., Baumann, N. & Kleinman, H. K. Schwann cell differentiation in vitro: extracellular matrix deposition and interaction. Dev. Neurosci. 8, 182–196 (1986).

Grant, D. S. et al. The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components. Am. J. Anat. 174, 387–398 (1985).

Hadley, M. A., Byers, S. W., Suarez-Quian, C. A., Kleinman, H. K. & Dym, M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101, 1511–1522 (1985).

Kleinman, H. K. et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188–6193 (1982).

Timpl, R. et al. Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found. Symp. 108, 25–43 (1984).

Fujiwara, S., Wiedemann, H., Timpl, R., Lustig, A. & Engel, J. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur. J. Biochem. 143, 145–157 (1984).

Paulsson, M. et al. Structure and function of basement membrane proteoglycans. Ciba Found. Symp. 124, 189–203 (1986).

Dziadek, M., Paulsson, M., Aumailley, M. & Timpl, R. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Eur. J. Biochem. 161, 455–464 (1986).

Kohfeldt, E., Sasaki, T., Gohring, W. & Timpl, R. Nidogen-2: a new basement membrane protein with diverse binding properties. J. Mol. Biol. 282, 99–109 (1998).

Timpl, R. et al. Laminin: a glycoprotein from basement membranes. J. Biol. Chem. 254, 9933–9937 (1979).

Alitalo, K., Vaheri, A., Krieg, T. & Timpl, R. Biosynthesis of two subunits of type IV procollagen and of other basement membrane proteins by a human tumor cell line. Eur. J. Biochem. 109, 247–255 (1980).

Timpl, R. Proteoglycans of basement membranes. Experientia 49, 417–428 (1993).

Wisdom, B. J. Jr, Gunwar, S., Hudson, M. D., Noelken, M. E. & Hudson, B. G. Type IV collagen of Engelbreth-Holm-Swarm tumor matrix: identification of constituent chains. Connect. Tissue Res. 27, 225–234 (1992).

Lei, H., Kalluri, R., Furth, E. E., Baker, A. H. & Strauss, J. F. Rat amnion type IV collagen composition and metabolism: implications for membrane breakdown. Biol. Reprod. 60, 176–182 (1999).

Gunwar, S. et al. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273, 8767–8775 (1998).

Kahsai, T. Z. et al. Seminiferous tubule basement membrane. Composition and organization of type IV collagen chains, and the linkage of alpha3(IV) and alpha5(IV) chains. J. Biol. Chem. 272, 17023–17032 (1997).

Lei, H. et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J. Clin. Invest. 98, 1971–1978 (1996).

Colognato, H. & Yurchenco, P. D. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218, 213–234 (2000).

Kalluri, R. Discovery of type IV collagen non-collagenous domains as novel integrin ligands and inhibitors of angiogenesis. 67th Quantitative Biology: Cardiovascular System, In press (2003). Documents how type-IV-collagen-derived endogenous inhibitor of angiogenesis and tumour growth were discovered.

Timpl, R. & Brown, J. C. The laminins. Matrix Biol. 14, 275–281 (1994).

Bengtsson, E. et al. The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J. Biol. Chem. 277, 15061–15068 (2002).

Miosge, N., Sasaki, T. & Timpl, R. Evidence of nidogen-2 compensation for nidogen-1 deficiency in transgenic mice. Matrix Biol. 21, 611–621 (2002).

Salmivirta, K. et al. Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Exp. Cell. Res. 279, 188–201 (2002).

Schymeinsky, J. et al. Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice. Mol. Cell. Biol. 22, 6820–6830 (2002).

Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development 129, 2711–2722 (2002).

Miosge, N. et al. Ultrastructural colocalization of nidogen-1 and nidogen-2 with laminin-1 in murine kidney basement membranes. Histochem. Cell Biol. 113, 115–124 (2000).

Costell, M. et al. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122 (1999).

Klein, G., Conzelmann, S., Beck, S., Timpl, R. & Muller, C. A. Perlecan in human bone marrow: a growth-factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14, 457–465 (1995).

Hopf, M., Gohring, W., Ries, A., Timpl, R. & Hohenester, E. Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1. Nature Struct. Biol. 8, 634–640 (2001).

Costell, M., Sasaki, T., Mann, K., Yamada, Y. & Timpl, R. Structural characterization of recombinant domain II of the basement membrane proteoglycan perlecan. FEBS Lett. 396, 127–131 (1996).

Hopf, M., Gohring, W., Kohfeldt, E., Yamada, Y. & Timpl, R. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur. J. Biochem. 259, 917–925 (1999).

Yurchenco, P. D. & Ruben, G. C. Type IV collagen lateral associations in the EHS tumor matrix. Comparison with amniotic and in vitro networks. Am. J. Pathol. 132, 278–291 (1988).

Timpl, R. Macromolecular organization of basement membranes. Curr. Opin. Cell Biol. 8, 618–624 (1996).

Kalluri, R. & Cosgrove, D. Assembly of type IV collagen. Insights from alpha3(IV) collagen-deficient mice. J. Biol. Chem. 275, 12719–12724 (2000).

Boutaud, A. et al. Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J. Biol. Chem. 275, 30716–30724 (2000).

Borza, D. B. et al. The NC1 domain of collagen IV encodes a novel network composed of the alpha 1, alpha 2, alpha 5, and alpha 6 chains in smooth muscle basement membranes. J. Biol. Chem. 276, 28532–28540 (2001).

Sundaramoorthy, M., Meiyappan, M., Todd, P. & Hudson, B. G. Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J. Biol. Chem. 277, 31142–31153 (2002).

Than, M. E. et al. The 1.9-Å crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link. Proc. Natl Acad. Sci. USA 99, 6607–6612 (2002). First paper, along with reference 73, to solve the crystal structure of the NC1 domain hexamer of type IV collagen.

Timpl, R. & Brown, J. C. Supramolecular assembly of basement membranes. Bioessays 18, 123–132 (1996).

Aumailley, M. et al. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 43, 7–12 (1993).

Aumailley, M., Wiedemann, H., Mann, K. & Timpl, R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur. J. Biochem. 184, 241–248 (1989).

Reference deleted in proof.

Kvansakul, M., Hopf, M., Ries, A., Timpl, R. & Hohenester, E. Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. EMBO J. 20, 5342–5346 (2001).

Hopf, M., Gohring, W., Mann, K. & Timpl, R. Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. J. Mol. Biol. 311, 529–541 (2001).

Brown, J. C., Sasaki, T., Gohring, W., Yamada, Y. & Timpl, R. The C-terminal domain V of perlecan promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur. J. Biochem. 250, 39–46 (1997).

Mayer, U., Mann, K., Fessler, L. I., Fessler, J. H. & Timpl, R. Drosophila laminin binds to mammalian nidogen and to heparan sulfate proteoglycan. Eur. J. Biochem. 245, 745–750 (1997).

Timpl, R. et al. Structure and function of the laminin-nidogen complex. Ann. NY Acad. Sci. 580, 311–323 (1990).

Nagayoshi, T. et al. Human nidogen: complete amino acid sequence and structural domains deduced from cDNAs, and evidence for polymorphism of the gene. DNA 8, 581–594 (1989).

Aumailley, M., Pesch, M., Tunggal, L., Gaill, F. & Fassler, R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta)1 integrin-deficient embryoid bodies. J. Cell Sci. 113, 259–268 (2000).

Ancsin, J. B. & Kisilevsky, R. Laminin interactions important for basement membrane assembly are promoted by zinc and implicate laminin zinc finger-like sequences. J. Biol. Chem. 271, 6845–6851 (1996).

Tsiper, M. V. & Yurchenco, P. D. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J. Cell Sci. 115, 1005–1015 (2002).

Charonis, A. S., Tsilbary, E. C., Yurchenco, P. D. & Furthmayr, H. Binding of type IV collagen to laminin. A morphological study. J. Cell Biol. 100, 1848–1853 (1985).

Sasaki, T. et al. Deficiency of beta 1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Exp. Cell Res. 238, 70–81 (1998).

Utani, A. et al. A specific sequence of the laminin alpha 2 chain critical for the initiation of heterotrimer assembly. J. Biol. Chem. 270, 3292–3298 (1995).

Andac, Z. et al. Analysis of heparin, alpha-dystroglycan and sulfatide binding to the G domain of the laminin alpha1 chain by site-directed mutagenesis. J. Mol. Biol. 287, 253–264 (1999).

Talts, J. F. & Timpl, R. Mutation of a basic sequence in the laminin alpha2LG3 module leads to a lack of proteolytic processing and has different effects on beta1 integrin-mediated cell adhesion and alpha-dystroglycan binding. FEBS Lett. 458, 319–323 (1999).

McBride, D. J. Jr, Kadler, K. E., Hojima, Y. & Prockop, D. J. Self-assembly into fibrils of a homotrimer of type I collagen. Matrix 12, 256–263 (1992).

Prockop, D. J. Mutations in collagen genes as a cause of connective tissue diseases. N. Engl. J. Med. 326, 540–546 (1992).

Ortega, N. & Werb, Z. New functional roles for non-collagenous domains of basement membrane collagens. J. Cell Sci. 115, 4201–4214 (2002).

Tomono, Y. et al. Epitope-defined monoclonal antibodies against multiplexin collagens demonstrate that type XV and XVIII collagens are expressed in specialized basement membranes. Cell Struct. Funct. 27, 9–20 (2002).

Ramchandran, R. et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem. Biophys. Res. Commun. 255, 735–739 (1999).

Rehn, M. & Pihlajaniemi, T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc. Natl Acad. Sci. USA 91, 4234–4238 (1994).

Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H. & Kuhn, K. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120, 203–211 (1981).

Kuhn, K. et al. Macromolecular structure of basement membrane collagens. FEBS Lett. 125, 123–128 (1981).

Hagg, P. M., Horelli-Kuitunen, N., Eklund, L., Palotie, A. & Pihlajaniemi, T. Cloning of mouse type XV collagen sequences and mapping of the corresponding gene to 4B1-3. Comparison of mouse and human alpha 1 (XV) collagen sequences indicates divergence in the number of small collagenous domains. Genomics 45, 31–41 (1997).

Muragaki, Y., Abe, N., Ninomiya, Y., Olsen, B. R. & Ooshima, A. The human alpha 1(XV) collagen chain contains a large amino-terminal non-triple helical domain with a tandem repeat structure and homology to alpha 1(XVIII) collagen. J. Biol. Chem. 269, 4042–4046 (1994).

Muona, A., Eklund, L., Vaisanen, T. & Pihlajaniemi, T. Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(−/−) mice. Matrix Biol. 21, 89–102 (2002).

Myers, J. C., Kivirikko, S., Gordon, M. K., Dion, A. S. & Pihlajaniemi, T. Identification of a previously unknown human collagen chain, alpha 1(XV), characterized by extensive interruptions in the triple-helical region. Proc. Natl Acad. Sci. USA 89, 10144–10148 (1992).

Myers, J. C. et al. Human cDNA clones transcribed from an unusually high-molecular-weight RNA encode a new collagen chain. Gene 123, 211–217 (1993).

Myers, J. C., Dion, A. S., Abraham, V. & Amenta, P. S. Type XV collagen exhibits a widespread distribution in human tissues but a distinct localization in basement membrane zones. Cell Tissue Res. 286, 493–505 (1996).

Pihlajaniemi, T. & Rehn, M. Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Prog. Nucleic Acid Res. Mol. Biol. 50, 225–262 (1995).

Kivirikko, S. et al. Primary structure of the alpha 1 chain of human type XV collagen and exon-intron organization in the 3′ region of the corresponding gene. J. Biol. Chem. 269, 4773–4779 (1994).

Kivirikko, S., Saarela, J., Myers, J. C., Autio-Harmainen, H. & Pihlajaniemi, T. Distribution of type XV collagen transcripts in human tissue and their production by muscle cells and fibroblasts. Am. J. Pathol. 147, 1500–1509 (1995).

Sasaki, T. et al. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J. Mol. Biol. 301, 1179–1190 (2000).

Sasaki, T., Hohenester, E. & Timpl, R. Structure and function of collagen-derived endostatin inhibitors of angiogenesis. IUBMB Life 53, 77–84 (2002).

Sasaki, T. et al. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17, 4249–4256 (1998).

Eklund, L. et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc. Natl Acad. Sci. USA 98, 1194–1199 (2001).

Rehn, M., Hintikka, E. & Pihlajaniemi, T. Primary structure of the alpha 1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the alpha 1(XVIII) chain with its homologue, the alpha 1(XV) collagen chain. J. Biol. Chem. 269, 13929–13935 (1994).

Oh, S. P. et al. Cloning of cDNA and genomic DNA encoding human type XVIII collagen and localization of the alpha 1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. Genomics 19, 494–499 (1994).

Hagg, P. M., Muona, A., Lietard, J., Kivirikko, S. & Pihlajaniemi, T. Complete exon-intron organization of the human gene for the alpha1 chain of type XV collagen (COL15A1) and comparison with the homologous COL18A1 gene. J. Biol. Chem. 273, 17824–17831 (1998).

Hohenester, E., Sasaki, T., Olsen, B. R. & Timpl, R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 Å resolution. EMBO J. 17, 1656–1664 (1998).

Suzuki, O. T. et al. Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am. J. Hum. Genet. 71, 1320–1329 (2002).

Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

Reference deleted in proof.

Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible or angiogenesis. J. Exp. Med. 133, 275–288 (1971).

Folkman, J. Regulation of angiogenesis. Blood 82, 60 (1993).

Folkman, J. & Shing, Y. Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992).

Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

Jain, R. K. & Carmeliet, P. F. Vessels of death or life. Sci. Am. 285, 38–45 (2001).

Folkman, J. Incipient angiogenesis. J. Natl Cancer Inst. 92, 94–95 (2000).

Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

Folkman, J. & D'Amore, P. A. Blood vessel formation: what is its molecular basis? Cell 87, 1153–1155 (1996).

Clark, E. R. & Clark, E. L. Microscopic observation on the growth of blood capillaries in the living organisms. Am. J. Anat. 64, 251–264 (1938).

Form, D. M., Pratt, B. M. & Madri, J. A. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab. Invest. 55, 521–530 (1986).

Madri, J. A. & Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34, 85–91 (1986).

Madri, J. A. Extracellular matrix modulation of vascular cell behaviour. Transpl. Immunol. 5, 179–183 (1997).

Ingber, D. E. & Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109, 317–330 (1989).

Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

Folkman, J. in Cancer Medicine (eds Holland, J. F. et al.) 132–152 (BC Decker, Inc., Ontario, 2000).

Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

Eliceiri, B. P. & Cheresh, D. A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13, 563–568 (2001).

Ingber, D. & Folkman, J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 59, 44–51 (1988).

Haralabopoulos, G. C. et al. Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in matrigel in vitro and angiogenesis in vivo. Lab. Invest. 71, 575–582 (1994).

Maragoudakis, M. E. et al. Basement membrane biosynthesis as a target for developing inhibitors of angiogenesis with anti-tumor properties. Kidney Int. 43, 147–150 (1993).

Maragoudakis, M. E., Haralabopoulos, G. C., Tsopanoglou, N. E. & Pipili-Synetos, E. Validation of collagenous protein synthesis as an index for angiogenesis with the use of morphological methods. Microvasc. Res. 50, 215–222 (1995).

Oberbaumer, I., Wiedemann, H., Timpl, R. & Kuhn, K. Shape and assembly of type IV procollagen obtained from cell culture. EMBO J. 1, 805–810 (1982).

Grant, D. S., Kibbey, M. C., Kinsella, J. L., Cid, M. C. & Kleinman, H. K. The role of basement membrane in angiogenesis and tumor growth. Pathol. Res. Pract. 190, 854–863 (1994).

Furcht, L. T. Role of cell adhesion molecules in promoting migration of normal and malignant cells. Prog. Clin. Biol. Res. 149, 15–53 (1984).

Furcht, L. T. Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab. Invest. 55, 505–509 (1986).

Cameron, J. D., Skubitz, A. P. & Furcht, L. T. Type IV collagen and corneal epithelial adhesion and migration. Effects of type IV collagen fragments and synthetic peptides on rabbit corneal epithelial cell adhesion and migration in vitro. Invest. Ophthalmol. Vis. Sci. 32, 2766–2773 (1991).

Chelberg, M. K., McCarthy, J. B., Skubitz, A. P., Furcht, L. T. & Tsilibary, E. C. Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J. Cell Biol. 111, 261–270 (1990).

Herbst, T. J., McCarthy, J. B., Tsilibary, E. C. & Furcht, L. T. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106, 1365–1373 (1988).

Miles, A. J. et al. A peptide model of basement membrane collagen alpha 1 (IV) 531-543 binds the alpha 3 beta 1 integrin. J. Biol. Chem. 270, 29047–29050 (1995).

Tsilibary, E. C. et al. Heparin type IV collagen interactions: equilibrium binding and inhibition of type IV collagen self-assembly. J. Biol. Chem. 263, 19112–19118 (1988).

Tsilibary, E. C. et al. Identification of a multifunctional, cell-binding peptide sequence from the a1(NC1) of type IV collagen. J. Cell Biol. 111, 1583–1591 (1990).

Koliakos, G. G., Kouzi-Koliakos, K., Furcht, L. T., Reger, L. A. & Tsilibary, E. C. The binding of heparin to type IV collagen: domain specificity with identification of peptide sequences from the α1(IV0 and α2(IV) which preferentially bind heparin. J. Biol. Chem. 264, 2313–2323 (1989).

Miles, A. J., Skubitz, A. P., Furcht, L. T. & Fields, G. B. Promotion of cell adhesion by single-stranded and triple-helical peptide models of basement membrane collagen alpha 1(IV)531-543. Evidence for conformationally dependent and conformationally independent type IV collagen cell adhesion sites. J. Biol. Chem. 269, 30939–30945 (1994).

Timpl, R. et al. Structure and biology of the globular domain of basement membrane collagen type IV. Ann. NY Acad. Sci. 460, 58–72 (1985).

Klagsbrun, M., Knighton, D. & Folkman, J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 36, 110–114 (1976).

Rogelj, S. et al. Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells. J. Cell Biol. 109, 823–831 (1989).

Bashkin, P. et al. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28, 1737–1743 (1989).

Sasaki, T. et al. Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J. 18, 6240–6248 (1999).

Folkman, J. & Shing, Y. Control of angiogenesis by heparin and other sulfated polysaccharides. Adv. Exp. Med. Biol. 313, 355–364 (1992).

Soker, S. et al. Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochem. Biophys. Res. Commun. 203, 1339–1347 (1994).

Cohen, T. et al. VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J. Biol. Chem. 270, 11322–11326 (1995).

Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

Gengrinovitch, S. et al. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J. Biol. Chem. 274, 10816–10822 (1999).

Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000). First paper to demonstrate the role of MMP9 in the angiogenic switch.

Heissig, B., Hattori, K., Friedrich, M., Rafii, S. & Werb, Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr. Opin. Hematol. 10, 136–141 (2003).

Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

Chang, C. & Werb, Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43 (2001).

Lynch, C. C. & Matrisian, L. M. Matrix metalloproteinases in tumor-host cell communication. Differentiation 70, 561–573 (2002).

Cunha, G. R. & Matrisian, L. M. It's not my fault, blame it on my microenvironment. Differentiation 70, 469–472 (2002).

Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

Coussens, L. M. & Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26 (2001).

Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1079 (2001).

Xu, J., Rodriguez, D., Kim, J. J. & Brooks, P. C. Generation of monoclonal antibodies to cryptic collagen sites by using subtractive immunization. Hybridoma 19, 375–385 (2000).

Lee, S. J. et al. Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBS Lett. 519, 147–152 (2002).

Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res. 60, 5410–5413 (2000).

Maeshima, Y. et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J. Biol. Chem. 276, 15240–15248 (2001).

Kamphaus, G. D. et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem. 275, 1209–1215 (2000).

Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res. 60, 2520–2526 (2000).

Petitclerc, E. et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem. 275, 8051–8061 (2000).

Yan, L., Borregaard, N., Kjeldsen, L. & Moses, M. A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem. 276, 37258–37265 (2001).

Pozzi, A., LeVine, W. F. & Gardner, H. A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21, 272–281 (2002).

Pozzi, A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc. Natl Acad. Sci. USA 97, 2202–2207 (2000).

Alitalo, K., Kurkinen, M., Vaheri, A., Krieg, T. & Timpl, R. Extracellular matrix components synthesized by human amniotic epithelial cells in culture. Cell 19, 1053–1062 (1980).

Sheppard, D. In vivo functions of integrins: lessons from null mutations in mice. Matrix Biol. 19, 203–209 (2000).

Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992). A classic review of cell adhesion involving matrix molecules.

Aumailley, M., Specks, U. & Timpl, R. Cell adhesion to type-VI collagen. Biochem. Soc. Trans. 19, 843–847 (1991).

Aumailley, M., Timpl, R. & Risau, W. Differences in laminin fragment interactions of normal and transformed endothelial cells. Exp. Cell Res. 196, 177–183 (1991).

Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

Gardner, H. A. Integrin signaling in fibrosis and scleroderma. Curr. Rheumatol. Rep. 1, 28–33 (1999).

de Fougerolles, A. R. et al. Regulation of inflammation by collagen-binding integrins alpha1beta1 and alpha2beta1 in models of hypersensitivity and arthritis. J. Clin. Invest. 105, 721–729 (2000).

Iruela-Arispe, M. L., Hasselaar, P. & Sage, H. Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64, 174–186 (1991).

Yost, J. C. & Sage, E. H. Specific interaction of SPARC with endothelial cells is mediated through a carboxyl-terminal sequence containing a calcium-binding EF hand. J. Biol. Chem. 268, 25790–25796 (1993).

Kato, Y. et al. Induction of SPARC by VEGF in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 287, 422–426 (2001).

Motamed, K. SPARC (osteonectin/BM-40). Int. J. Biochem. Cell Biol. 31, 1363–1366 (1999).

Kupprion, C., Motamed, K. & Sage, E. H. SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J. Biol. Chem. 273, 29635–29640 (1998).

Basu, A., Kligman, L. H., Samulewicz, S. J. & Howe, C. C. Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM–40). BMC Cell Biol. 2, 15 (2001).

Norose, K. et al. SPARC deficiency leads to early-onset cataractogenesis. Invest. Ophthalmol. Vis. Sci. 39, 2674–2680 (1998).

Thyboll, J. et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol. Cell. Biol. 22, 1194–1202 (2002).

Gonzalez, A. M. et al. Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc. Natl Acad. Sci. USA 99, 16075–16080 (2002).

Aviezer, D. et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013 (1994).

Mongiat, M., Sweeney, S. M., San Antonio, J. D., Fu, J. & Iozzo, R. V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278, 4238–4249 (2003).

O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

Marneros, A. G. & Olsen, B. R. The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol. 20, 337–345 (2001).

Jin, X. et al. Evaluation of endostatin antiangiogenesis gene therapy in vitro and in vivo. Cancer Gene Ther. 8, 982–989 (2001).

Joki, T. et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nature Biotechnol. 19, 35–39 (2001).

Kim, Y. M. et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 277, 27872–27879 (2002).

Karumanchi, S. A. et al. Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811–822 (2001).

Rehn, M. et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl Acad. Sci. USA 98, 1024–1029 (2001).

Yamaguchi, N. et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 18, 4414–4423 (1999).

Sudhakar, A. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha vbeta 3 and alpha 5beta 1 integrins. Proc. Natl Acad. Sci. USA 100, 4766–4771 (2003).

Herbst, R. S. et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 20, 3792–3803 (2002).

Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase. Cancer Res. 59, 6052–6056 (1999).

Felbor, U. et al. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19, 1187–1194 (2000).

Maeshima, Y. et al. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J. Biol. Chem. 275, 21340–21348 (2000).

Maeshima, Y., Colorado, P. C. & Kalluri, R. Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J. Biol. Chem. 275, 23745–23750 (2000).

Maeshima, Y. et al. Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J. Biol. Chem. 276, 31959–31968 (2001).

Maeshima, Y. et al. Tumstatin, an endothelial cell–specific inhibitor of protein synthesis. Science 295, 140–143 (2002).

Zhang, X., Hudson, B. G. & Sarras, M. P. Jr. Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev. Biol. 164, 10–23 (1994).