Based on the Second Virial Coefficient (A2) to Study Effect of the Synergistic Action of Solvent and External Electric Field on the Solution Behavior and Film’s Condensed State Structure

Chinese Journal of Polymer Science - Tập 40 - Trang 478-490 - 2022
Ya-Nan Guo1, Hao Zhang1, Bin Liu1, Dan Lu1
1State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China

Tóm tắt

The solventnatures are crucial to deeply reveal solution behavior of macromolecular chains, physical essence of condensed state structures formation of the film as well as the photoelectronic devices performance. Based on the second virial coefficient (A2), effect of the synergistic action of solvents and external electric field on both solution behavior and the film’s condensed state structure for the semi-rigid conjugated polymer, poly[2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylvinylene] (MEH-PPV) was investigated by dynamic/static light scattering, photoluminescence spectroscopy and transmission electron microscopy, etc. It was found that although the MEH-PPV solutions with different solvents (toluene, chlorobenzene, chloroform and tetrahydrofuran) all could generate a response to the external electric field, the degree of response varied significantly with the change of solvent nature. Furthermore, ordered degree of the film from the solutions was also obviously different. The essential reason for this responsive difference was firstly revealed in the research, which actually depended on the degree of interaction between the solute and solvent, and this degree of interaction could be quantitatively described by the second virial coefficient (A2). The bigger the A2, the stronger the interaction between solvent and solute in the solution, and the stronger the response to the external electric field. Further, under the induction of external electric field, chains aggregations with different sizes were formed accompanied by large-scale chains ordered structure in the solution. This ordered structure not only can effectively transfer to film prepared by the precursor solution but also is beneficial to enhance the carrier mobility and device efficiency of the photoelectronic film.

Tài liệu tham khảo

Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. Ai, X.; Evans, E. W.; Dong, S.; Gillett, A. J.; Guo, H.; Chen, Y.; Hele, T. J. H.; Friend, R. H.; Li, F. Efficient radical-based light-emitting diodes with doublet emission. Nature 2018, 563, 536–540. Cho, Y. J.; Aziz, H. Root causes of the limited electroluminescence stability of organic light-emitting devices made by solution-coating. ACS Appl. Mater. Interfaces 2018, 10, 18113–18122. Vilbrandt, N.; Gassmann, A.; Von Seggern, H.; Rehahn, M. Bluegreenish electroluminescent poly(p-phenylenevinylene) developed for organic light-emitting diode applications. Macromolecules 2016, 49, 1674–1680. Zhang, H.; Li, T.; Liu, B.; Ma, T. N.; Huang, L.; Bai, Z. M.; Lu, D. Effect and mechanism of solvent properties on solution behavior and films condensed state structure for the semi-rigid conjugated polymers. Chinese J. Polym. Sci. 2021, 39, 796–814. Zhang, H.; Li, T.; Ma, T.; Liu, B.; Ren, J.; Lin, J.; Yu, M.; Xie, L.; Lu, D. Effect of solvents on the solution state and film condensed state structures of a polyfluorene conjugated polymer in the dynamic evolution process from solution to film. J. Phys. Chem. C 2019, 123, 27317–27326. Liu, B.; Zhang, H.; Ren, J.; Ma, T.; Yu, M.; Xie, L.; Lu, D. Effect of solvent aromaticity on poly(9,9-dioctylfluorene) (PFO) chain solution behavior and film condensed state structure. Polymer 2019, 185, 121986. Huang, L.; Li, T.; Liu, B.; Zhang, L.; Bai, Z.; Li, X.; Huang, X.; Lu, D. A transformation process and mechanism between the alpha-conformation and β-conformation of conjugated polymer PFO in precursor solution. Soft Matter 2015, 11, 2627–38. Ma, T.; Song, N.; Qiu, J.; Zhang, H.; Lu, D. Synergistic effects of external electric field and solvent vapor annealing with different polarities to enhance β-phase and carrier mobility of the poly(9,9-dioctylfluorene) films. Chem. Res. Chin. Univ. 2020, 36, 1310–1319. Kadimi, A.; Benhamou, K.; Ounaies, Z.; Magnin, A.; Dufresne, A.; Kaddami, H.; Raihane, M. Electric field alignment of nanofibrillated cellulose (NFC) in silicone oil: impact on electrical properties. ACS Appl. Mater. Interfaces 2014, 6, 9418–9425. Yao, Z. F.; Wang, Z. Y.; Wu, H. T.; Lu, Y.; Li, Q. Y.; Zou, L.; Wang, J. Y.; Pei, J. Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew. Chem. Int. Ed. 2020, 59, 17467–17471. Martens, H. C. F.; Blom, P. W. M.; Schoo, H. F. M. Comparative study of hole transport in poly(p-phenylene vinylene)derivatives. Phys. Rev. B 2000, 61, 7489–7493. Zalar, P.; Kuik, M.; Henson, Z. B.; Woellner, C.; Zhang, Y.; Sharenko, A.; Bazan, G. C.; Nguyen, T. Q. Increased mobility induced by addition of a Lewis acid to a Lewis basic conjugated polymer. Adv. Mater. 2014, 26, 724–727. Kim, N.K.; Shin, E.S.; Noh, Y.Y.; Kim, D.Y. A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Org. Electron. 2018, 55, 6–14. Jackson, N. E.; Kohlstedt, K. L.; Savoie, B. M.; Olvera de la Cruz, M.; Schatz, G. C.; Chen, L. X.; Ratner, M. A. Conformational order in aggregates of conjugated polymers. J. Am. Chem. Soc. 2015, 137, 6254–6262. Rahman, M. H.; Liao, S. C.; Chen, H. L.; Chen, J. H.; Ivanov, V. A.; Chu, P. P. J.; Chen, S. A. Aggregation of conjugated polymers in aromatic solvent. Langmuir 2009, 25, 1667–1674. Lee, F. L.; Barati Farimani, A.; Gu, K. L.; Yan, H.; Toney, M. F.; Bao, Z.; Pande, V. S. Solution-phase conformation and dynamics of conjugated isoindigo-based donor-acceptor polymer single chains. J. Phys. Chem. Lett. 2017, 8, 5479–5486. Liu, Y.; Shi, Q.; Dong, H.; Tan, J.; Hu, W.; Zhan, X. Solvent-vapor induced self-assembly of a conjugated polymer: a correlation between solvent nature and transistor performance. Org. Electron. 2012, 13, 2372–2378. Geens, W.; Shaheen, S. E.; Wessling, B.; Brabec, C. J.; Poortmans, J.; Sariciftci, N. S. Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org. Electron. 2002, 3, 105–110. Rakhmanova, S. V.; Conwell, E. M. Electric-field dependence of mobility in conjugated polymer films. Appl. Phys. Lett. 2000, 76, 3822–3824. Swager, T. M.; Zhu, Z. G. Conjugated polymer liquid crystal solutions: control of conformation and alignment. J. Am. Chem. Soc. 2002, 124, 9670–9671. Liu, B.; Zhang, H.; Ma, T.; Bai, L.; Lin, J.; Lu, D. Controlling condensed state structures of different polar conjugated polymer polyfluorenes (PFs) by applying an external electric field across a solution with polar solvent THF. J. Mater. Chem. C 2020, 8, 6503–6512. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 1996, 273, 931–933. Chen, J. Y.; Wu, H. C.; Chiu, Y. C.; Lin, C. J.; Tung, S. H.; Chen, W. C. Electrospun poly(3-hexylthiophene) nanofibers with highly extended and oriented chains through secondary electric field for high-performance field-effect transistors. Adv. Electr. Mater. 2015, 1, 1400028. Xi, Y.; Pozzo, L. D. Electric field directed formation of aligned conjugated polymer fibers. Soft Matter 2017, 13, 3894–3908. Ma, T.; Song, N.; Liu, B.; Ren, J.; Zhang, H.; Lu, D. Effect of external electric field on poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(bithiophene)] chain orderness, morphology, and carrier mobility in different condensation processes. J. Phys. Chem. C 2019, 123, 13993–14002. Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Boker, A. Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. ACS Nano 2009, 3, 1091–1096. Bae, J.; Cha, S. H. Effect of nanoparticle surface functionality on microdomain orientation in block copolymer thin films under electric field. Polymer 2014, 55, 2014–2020. Xu, T.; Zhu, Y. Q.; Gido, S. P.; Russell, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 2004, 37, 2625–2629. Remillard, E. M.; Zhang, Q.; Sosina, S.; Branson, Z.; Dasgupta, T.; Vecitis, C. D. Electric-field alignment of aqueous multi-walled carbon nanotubes on microporous substrates. Carbon 2016, 100, 578–589. Ma, C.; Zhang, W.; Zhu, Y.; Ji, L.; Zhang, R.; Koratkar, N.; Liang, J. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 2008, 46, 706–710. Hao, X. T.; Chan, N. Y.; Dunstan, D. E.; Smith, T. A. Conformational changes and photophysical behavior in poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] thin films cast under an electric field. J. Phys. Chem. C 2009, 113, 11657–11661. Jin, H.; Hou, Y.; Shi, Q.; Meng, X.; Teng, F. Improving photovoltaic properties via electric-field-induced orientation of conjugated polymer. Solid State Commun. 2006, 140, 555–558. Ren, J.; Tao, Y.; Li, X.; Ma, T.; Liu, B.; Lu, D. Effect of external electric field on the ordered structure of molecular chains and hole mobility in regioregular poly(3-hexylthiophene) with different molecular weights. Langmuir 2018, 34, 13871–13881. Inigo, A. R.; Tan, C. H.; Fann, W.; Huang, Y. S.; Perng, G. Y.; Chen, S. A. Non-dispersive hole transport in a soluble poly(p-phenylene vinylene). Adv. Mater. 2001, 13, 504–508. Inigo, A. R.; Chang, C. C.; Fann, W.; White, J. D.; Huang, Y. S.; Jeng, U. S.; Sheu, H. S.; Peng, K. Y.; Chen, S. A. Enhanced hole mobility in poly-(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylenevinylene) by elimination of nanometer-sized domains. Adv. Mater. 2005, 17, 1835–1838. Kim, M. S.; Park, D. H.; Cho, E. H.; Kim, K. H.; Park, Q. H.; Song, H.; Kim, D. C.; Kim, J.; Joo, J. Complex nanoparticle of light-emitting MEH-PPV with Au: enhanced luminescence. ACS Nano 2009, 3, 1329–1334. Inigo, A. R.; Huang, Y. F.; White, J. D.; Huang, Y. S.; Fann, W. S.; Peng K. Y.; Chen, S. A. Review of morphology dependent charge carrier mobility in MEH-PPV. J. Chin. Chem. Soc. 2010, 57, 459–468. Onda, S.; Kobayashi, H.; Hatano, T.; Furumaki, S.; Habuchi, S.; Vacha, M. Complete suppression of blinking and reduced photobleaching in single MEH-PPV chains in solution. J. Phys. Chem. Lett. 2011, 2, 2827–2831. Kohler, A.; Hoffmann, S. T.; Bassler, H. An order-disorder transition in the conjugated polymer MEH-PPV. J. Am. Chem. Soc. 2012, 134, 11594–11601. Ribeiro, A.; Camargo, H.; Pereira, D.; Custódio, R.; Martins, T. Photoluminescence of solvent-selected fluorescent moieties in MEH-PPV solutions and films. J. Braz. Chem. Soc. 2018, 29, 543–559. Wang, R.; Yang, X.; Hu, S.; Zhang, Y.; Yan, X.; Wang, Y.; Zhang, C.; Sheng, C. Effect of thermal annealing on aggregations in MEH-PPV films. J. Phys. Chem. C 2019, 123, 11055–11062. Su, C. Y.; Wu, Y. C.; Cheng, C. H.; Wang, W. C.; Wang, H. Y.; Chen, L. Y.; Kuo, H. C.; Lin, G. R. Color-converting violet laser diode with an ultrafast BEHP-PPV + MEH-PPV polymer blend for high-speed white lighting data link. ACS Appl. Electr. Mater. 2020, 2, 3017–3027. Koyama, R. The second virial coefficient of polymer solutions. J. Polym. Sci. 1959, XXXV, 247–258. Holt, P. L. Intermolecular potentials and the second virial coefficient. J. Chem. Edu. 2004, 81, 607. Pan, X.; Glatz, C. E. Solvent effects on the second virial coefficient of subtilisin and solubility. Cryst. Growth Des. 2003, 3, 203–207. Ohno, K.; Shida, K.; Kimura, M.; Kawazoe, Y. Monte Carlo study of the second virial coefficient of star polymers in a good solvent. Macromolecules 1996, 29, 2269–2274. Sole, K.; Tanaka, G. Second virial coefficient of polydisperse polymers. Macromolecules 1982, 15, 791–800. Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H. Y.; Körstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Müller Buschbaum, P. Solvent-induced morphology in polymer-based systems for organic photovoltaics. Adv. Funct. Mater. 2011, 21, 3382–3391. Bencheikh, F.; Duché, D.; Ruiz, C. M.; Simon, J. J.; Escoubas, L. Study of optical properties and molecular aggregation of conjugated low band gap copolymers: PTB7 and PTB7-Th. J. Phys. Chem. C 2015, 119, 24643–24648. Chang, H.; Wang, P.; Li, H.; Zhang, J.; Yan, D. Solvent vapor assisted spin-coating: A simple method to directly achieve high mobility from P3HT based thin film transistors. Synth. Met. 2013, 184, 1–4. Bergfeldt, K.; Piculell, L.; Linse, P. Segregation and association in mixed polymer solutions from Flory-Huggins model calculations. J. Phys. Chem. 1996, 100, 3680–3687. Emerson, J. A.; Toolan, D. T. W.; Howse, J. R.; Furst, E. M.; Epps, T. H. Determination of solvent-polymer and polymer-polymer flory-huggins interaction parameters for poly(3-hexylthiophene) via solvent vapor swelling. Macromolecules 2013, 36, 6533–6540. Willis, J. D.; Beardsley, T. M.; Matsen, M. W. Simple and accurate calibration of the Flory-Huggins interaction parameter. Macromolecules. 2020, 53, 9973–9982. Ferebee, R.; Hakem, I. F.; Koch, A.; Chen, M.; Wu, Y.; Loh, D.; Wilson, D. C.; Poole, J. L.; Walker, J. P.; Fytas, G.; Bockstaller, M. R. Light scattering analysis of mono- and multi-pegylated bovine serum albumin in solution: role of composition on structure and interactions. J. Phys. Chem. B 2016, 120, 4591–4599. Van Rijssel, J.; Peters, V. F.; Meeldijk, J. D.; Kortschot, R. J.; Van Dijk-Moes, R. J.; Petukhov, A. V.; Erne, B. H.; Philipse, A. P. Size-dependent second virial coefficients of quantum dots from quantitative cryogenic electron microscopy. J. Phys. Chem. B 2014, 118, 11000–11005. Kazakov, S. V.; Galaev, I. Y.; Mattiasson, B. Characterization of macromolecular solutions by a combined static and dynamic light scattering technique. Int. J. Thermophysics 2002, 23, 161–173. Li, Y. C.; Chen, C. Y.; Chang, Y. X.; Chuang, P. Y.; Chen, J. H.; Chen, H. L.; Hsu, C. S.; Ivanov, V. A.; Khalatur, P. G.; Chen, S. A. Scattering study of the conformational structure and aggregation behavior of a conjugated polymer solution. Langmuir 2009, 25, 4668–4677.