Nghiên cứu tổng hợp và hiệu suất của vật liệu cathode LiMnPO4/C pha tạp Fe–Ni cho pin lithium-ion dựa trên tính toán từ nguyên tắc đầu tiên

Ionics - Tập 28 - Trang 577-591 - 2021
Xiaolong Bi1,2, Longjiao Chang1,2, Shaohua Luo3, Shiyuan Cao1,2, Anlu Wei1,2, Wei Yang1,2, Jianan Liu1,2, Fusheng Zhang1
1School of Chemical and Material Engineering, Bohai University, Jinzhou, China
2Liaoning Key Laboratory of Engineering Technology Research Center of Silicon Materials, Jinzhou, China
3School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China

Tóm tắt

LiMnPO4 có cấu trúc olivin là một trong những vật liệu cathode có tiềm năng ứng dụng lớn cho pin lithium-ion nhờ vào các đặc tính như nguyên liệu phong phú, giá thành thấp, cấu trúc ổn định, mật độ năng lượng cao và độ ổn định chu kỳ tốt. Trong bài báo này, cấu trúc điện tử của hệ thống LiMn1-x-yFexNiyPO4 (x = 0, y = 0; x = 1/4, y = 1/4) được tính toán bằng phần mềm MS (Material Studio). Kết quả tính toán cho thấy độ rộng khe năng lượng của hệ LiMn1/2Fe1/4Ni1/4PO4/C là 0.105 eV, có sự thay đổi lớn so với LiMnPO4. Do đó, có thể suy đoán rằng vật liệu LiMnPO4 pha tạp Fe–Ni có hiệu suất điện hóa tốt hơn. Vật liệu composite LiMn1-x-yFexNiyPO4 (x = 0, y = 0; x = 1/4, y = 1/4) được tổng hợp bằng phương pháp kết tủa đồng thời, và các điều kiện tổng hợp tối ưu cũng đã được khảo sát. Thử nghiệm điện hóa cho thấy vật liệu cathode LiMn1/2Fe1/4Ni1/4PO4/C có các đặc tính điện hóa xuất sắc, với dung lượng sạc-xả ban đầu đạt 143.8 mAh/g, cao hơn đáng kể so với vật liệu LiMnPO4. Dung lượng xả của mẫu này duy trì khoảng 152 mAh/g sau 100 chu kỳ ở tốc độ 0.05 C, cho thấy độ ổn định chu kỳ tốt. Kết quả tính toán lý thuyết và thử nghiệm thực nghiệm xác nhận lẫn nhau, từ đó chuẩn bị được vật liệu LiMn1/2Fe1/4Ni1/4PO4/C với hiệu suất điện hóa xuất sắc.

Từ khóa

#LiMnPO4 #pin lithium-ion #vật liệu cathode #pha tạp Fe–Ni #hiệu suất điện hóa

Tài liệu tham khảo

Yu Z, Qu X, Dou A, Zhou Y, Su M, Liu Y (2021) Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceram Int 47:1758 Ling L, Han E, Qiao S, Liu H, Shi Y, Yuan W (2019) Synthesis characterization and improved electrochemical performance of Li2FeSiO4/C as cathode for lithium-ion battery by metal doping. Prog Nat Sci Mater Int 29:111 Li M, Su A, Qin Q, Qin Y, Dou A, Zhou Y, Su M, Liu Y (2021) High-rate capability of columbite CuNb2O6 anode materials for lithium-ion batteries. Mater Lett 284:128915 Liu Y, Fan X, Huang X, Liu D, Dou A, Su M, Chu D (2018) Electrochemical performance of Li1.2Ni0.2Mn0.6O2 coated with a facilely synthesized Li1.3Al0.3Ti1.7(PO4)3. J Power Sources 403:27 Cai K, Li Y, Lang X, Li L, Zhang Q (2019) Synergistic effect of sulfur on electrochemical performances of carbon-coated vanadium pentoxide cathode materials with polyvinyl alcohol as carbon source for lithium-ion batteries. Int J Energy Res 43:7664 Lang X, Zhao Y, Cai K, Li L, Chen D, Zhang Q (2019) A facile synthesis of stable TiO2/TiC composite material as sulfur immobilizers for cathodes of lithium-sulfur batteries with excellent electrochemical performances. Energy Technol 7:1900543 Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46:3006 Zhang J, Luo S, Chang L, Bao S, Liu J, Hao A, Wang Z, Liu Y, Xu Q, Zhai Y (2016) In-situ growth of LiMnPO4 on porous LiAlO2 nanoplates substrates from AAO synthesized by hydrothermal reaction with improved electrochemical performance. Electrochim Acta 193:16 Li J, Luo S, Wang Q, Yan S, Feng J, Ding X, He P, Zong L (2019) Facile fabrication of hierarchical LiMnPO4 microspheres for high-performance lithium-ion batteries cathode. J Electrochem Soc 166:A118 Li J, Luo S, Wang Q, Yan S, Feng J, Liu H, Ding X, He P (2018) Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries. Electrochim Acta 289:415 Chang L, Luo S, Li S, Lang X, San X, Liu J, Li J (2020) Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout. Ionics 26:4977 Zhang J, Luo S, Ren Q, Zhang D, Qin Y (2020) Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery. Appl Surf Sci 530:146628 Duan J, Wu C, Cao Y, Du K, Peng Z, Hu G (2016) Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating. Electrochim Acta 221:14 Cao Y, Xu L, Xie X, Mu K, Xie Y, Xue Z, Hu G, Du K, Peng Z (2019) Controllable synthesis of micronano-structured LiMnPO4/C cathode with hierarchical spindle for lithium ion batteries. Ceram Int 45:4886 Li J, Luo S, Ding X, Wang Q, He P (2018) NaCl-template assisted synthesis of 3D honeycomb-like LiMnPO4/C with high rate and stable performance as lithium-ion battery cathodes. ACS Sustain Chem Eng 6:16683 Pan X, Gao Z, Liu L, Xiao F, Xiao F, Xie S, Yi R (2019) Self-templating preparation and electrochemical performance of LiMnPO4 hollow microspheres. J Alloys Compd 783:468 Fu X, Chang K, Tang H, Li B, Li Y, Chang Z (2019) Environmentally compatible synthesis of LiMnPO4/RGO using pure water system. Solid State Ionics 337:115 Khalfaouy RE, Addaou A, Laajeb A, Lahsini A (2019) Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries. J Alloys Compd 775:836 Khalfaouy RE, Turan S, Dermenci KB, Savaci U, Addaou A, Laajeb A, Lahsini A (2019) Nickel-substituted LiMnPO4/C olivine cathode material: combustion synthesis, characterization and electrochemical performances. Ceram Int 45:17688 Li J, Luo S, Ding X, Wang Q, He P (2018) Three-dimensional honeycomb-structural LiAlO2-modified LiMnPO4 composite with superior high rate capability as Li-ion battery cathodes. ACS Appl Mater Interfaces 10:10786 Zhu C, Wu Z, Xie J, Chen Z, Tu J, Cao G, Zhao X (2018) Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode. J Mater Sci Technol 34:1544 Lecce DD, Hu T, Hassoun J (2017) Electrochemical features of LiMnPO4 olivine prepared by sol-gel pathway. J Alloys Compd 693:730 Long Y, Zhang Z, Wu Z, Su J, Lv X, Wen Y (2017) Microwave-assisted polyol synthesis of LiMnPO4/C and its use as a cathode material in lithium-ion batteries. Particuology 33:42 Su J, Liu Z, Long Y, Yao H, Lv X, Wen Y (2015) Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method. Electrochim Acta 173:559 Huang Q, Wu Z, Su J, Long Y, Lv X, Wen Y (2016) Synthesis and electrochemical performance of Ti–Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram Int 42:11348 Xu S, Lv X, Wu Z, Long Y, Su J, Wen Y (2017) Synthesis of porous-hollow LiMn0.85Fe0.15PO4/C microspheres as a cathode material for lithium-ion batteries. Powder Technol 308:94 Moskon J, Pivko M, Jerman I, Tchernychova E, Logar NZ, Zorko M, Selih VS, Dominko R, Gaberscek M (2016) Cycling stability and degradation mechanism of LiMnPO4 based electrodes. J Power Sources 303:97 Wen F, Shu H, Zhang Y, Wan J, Huang W, Yang X, Yu R, Liu L, Wang X (2016) Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries. Electrochim Acta 214:85 Zhang J, Luo S, Wang Q, Wang Z, Hao A, Zhang Y, Liu Y, Xu Q, Zhai Y (2017) Optimized hydrothermal synthesis and electrochemical performance of LiMnPO4/C cathode materials using high specific area spherical structure Li3PO4. J Alloys Compd 701:433 Wang C, Li S, Han Y, Lu Z (2017) Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batteries. ACS Appl Mater Interfaces 9:27618 Chang L, Luo S, Li S, Lang X, Wang Y, Liu J, San X (2020) Investigations on the preparation and electrochemical performance of the Li4Ti5O12/LiMn23/24Mg1/24PO4 full cell with a long-lifespan. Ionics 26:4267 Zhang J, Luo S, Chang L, Hao A, Wang Z, Liu Y, Xu Q, Wang Q, Zhang Y (2017) Co-hydrothermal synthesis of LiMn23/24Mg1/24PO4•LiAlO2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries. Appl Surf Sci 394:190 Khalfaouy RE, Turan S, Rodriguez MA, Dermenci KB, Savacı U, Addaou A, Laajeb A, Lahsini A (2020) Solution combustion synthesis and electrochemical properties of yttrium-doped LiMnPO4/C cathode materials for lithium ion batteries. J Rare Earths 38:976 Luo S, Sun Y, Bao S, Li J, Zhang J, Yi T (2019) Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability. J Electroanal Chem 832:196 Vásquez FA, Calderón JA (2019) Vanadium doping of LiMnPO4 cathode material: correlation between changes in the material lattice and the enhancement of the electrochemical performance. Electrochim Acta 325:134930 Sronsri C, Noisong P, Danvirutai C (2016) Synthesis, characterization and vibrational spectroscopic study of Co, Mg co-doped LiMnPO4. Spectrochim Acta A 153:436 Liu J, Wang J, Chen Q, Zhong S (2021) Mg-doped LiMnPO4/C cathode materials for enhanced lithium storage performance. Mater Technol 36:153 Neef C, Reiser A, Thauer E, Klingeler R (2020) Anisotropic ionic conductivity of LiMn1−xFexPO4 (0 ≤ x ≤ 1) single crystals. Solid State Ionics 346:115197 Deng Y, Yang C, Zou K, Qin X, Zhao Z, Chen G (2017) Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5≤y<1.0) cathode materials for high energy density lithium ion batteries. Adv Energy Mater 7:1601958 Yang H, Fu C, Sun Y, Wang L, Liu T (2020) Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coeffificient. Carbon 158:102 Wang L, Zhang L, Li J, Gao J, Jiang C, He X (2012) First-principles study of doping in LiMnPO4. Int J Electrochem Sci 7:3362 Zhang H, Gong Y, Li J, Du K, Cao Y, Li J (2019) Selecting substituent elements for LiMnPO4 cathode materials combined with density functional theory (DFT) calculations and experiments. J Alloys Compd 793:360 Chang L, Bi X, Luo S, Cao S, Wei A, Yang W, Liu J, Zhang F (2021) Insight into structural and electrochemical properties of Mg-doped LiMnPO4/C cathode materials with first-principles calculation and experimental verification. Int J Energy Res 44:1 Zhao C, Wang D, Lian R, Kan D, Dou Y, Wang C, Chen G, Wei Y (2021) Revealing the distinct electrochemical properties of TiSe2 monolayer and bulk counterpart in Li-ion batteries by first-principles calculation. Appl Surf Sci 540:148314 Gao Y, Shen K, Liu P, Liu L, Chi F, Hou X, Yang W (2021) First-principles investigation on electrochemical performance of Na-Doped LiNi1/3Co1/3Mn1/3O2. Front Phys 8:616066 Cheng J, Sivonxay E, Persson KA (2020) Evaluation of amorphous oxide coatings for high-voltage Li-ion battery applications using a first-principles framework. ACS Appl Mater Interfaces 12:35748 Sukkabot W (2020) Effect of transition metals doping on the structural and electronic properties of LiMnPO4: spin density functional investigation. Phys Scr 95:045811 Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno RJ (2004) Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). J Electrochem Soc 151:A1352 Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97:498