Baohuoside I inhibits FXR signaling pathway to interfere with bile acid homeostasis via targeting ER α degradation

Cell Biology and Toxicology - Tập 39 - Trang 1215-1235 - 2022
Zhen Zhao1, Lu-Lu Yang1, Qiao-Lei Wang1, Jin-Fa Du1, Zu-Guo Zheng1, Yan Jiang2, Ping Li1, Hui-Jun Li1
1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
2College of Chemical Engineering, Nanjing Forestry University, Nanjing, China

Tóm tắt

Epimedii folium (EF) is an effective herbal medicine in osteoporosis treatment, but the clinical utilization of EF has been limited due to potential hepatotoxicity. The previous studies identified that baohuoside I (BI), the main active component of EF, was relevant to EF-induced liver injury. However, the mechanisms of BI causing direct injury to hepatocytes remain unclear. Here, we reveal that BI inhibits FXR-mediated signaling pathway via targeting estrogen receptor α (ER α), leading to the accumulation of bile acids (BAs). Targeted bile acid analyses show BI alters the BA composition and distribution, resulting in impaired BA homeostasis. Mechanistically, BI induces FXR-dependent hepatotoxicity at transcriptional level. Additionally, ER α is predicted to bind to the FXR promoter region based on transcription factor binding sites databases and we further demonstrate that ER α positively regulates FXR promoter activity and affects the expression of target genes involved in BA metabolism. Importantly, we discover that ER α and its mediated FXR transcription regulation might be involved in BI-induced liver injury via ligand-dependent ER α degradation. Collectively, our findings indicate that FXR is a newly discovered target gene of ER α mediated BI-induced liver injury, and suggest BI may be responsible for EF-induced liver injury.

Tài liệu tham khảo

Arnal JF, Lenfant F, Metivier R, et al. Membrane and nuclear estrogen receptor Alpha actions: from tissue specificity to medical implications. Physiol Rev. 2017;97:1045–87. https://doi.org/10.1152/physrev.00024.2016. Barosso IR, Zucchetti AE, Miszczuk GS, et al. EGFR participates downstream of ERalpha in estradiol-17beta-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets. Arch Toxicol. 2016;90:891–903. https://doi.org/10.1007/s00204-015-1507-8. Barros RP, Gustafsson JA. Estrogen receptors and the metabolic network. Cell Metab. 2011;14:289–99. https://doi.org/10.1016/j.cmet.2011.08.005. Cai SY, Boyer JL. FXR: a target for cholestatic syndromes? Expert Opin Ther Targets. 2006;10:409–21. https://doi.org/10.1517/14728222.10.3.409. Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019;39:175–200. https://doi.org/10.1146/annurev-nutr-082018-124344. Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem. 2000;275:10918–24. https://doi.org/10.1074/jbc.275.15.10918. Collins JM, Huo Z, Wang D. ESR1 ChIP-Seq identifies distinct ligand-Free ESR1 genomic binding sites in human hepatocytes and liver tissue. Int J Mol Sci. 2021;22:1461. https://doi.org/10.3390/ijms22031461. Denson LA, Sturm E, Echevarria W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology. 2001;121:140–7. https://doi.org/10.1053/gast.2001.25503. Gao Y, Wang Z, Tang J, et al. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions. Front Med. 2020;14:68–80. https://doi.org/10.1007/s11684-019-0690-z. Gao Y, Xu G, Ma L, et al. Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity. Cell Commun Signal. 2021;19:13. https://doi.org/10.1186/s12964-020-00647-1. Ghonem NS, Assis DN, Boyer JL. Fibrates and cholestasis. Hepatology. 2015;62:635–43. https://doi.org/10.1002/hep.27744. Gonzalez FJ. Nuclear receptor control of enterohepatic circulation. Compr Physiol. 2012;2:2811–28. https://doi.org/10.1002/cphy.c120007. Heathcote EJ. Diagnosis and management of cholestatic liver disease. Clin Gastroenterol Hepatol. 2007;5:776–82. https://doi.org/10.1016/j.cgh.2007.05.008. Held HE, Pilla R, Ciarlone GE, Landon CS, Dean JB. Female rats are more susceptible to central nervous system oxygen toxicity than male rats. Physiol Rep. 2014;2:100282. https://doi.org/10.14814/phy2.282. Hirschfield GM, Heathcote EJ, Gershwin ME. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology. 2010;139:1481–96. https://doi.org/10.1053/j.gastro.2010.09.004. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25:1419–25. https://doi.org/10.1038/sj.emboj.7601049. Huang LY, Smit JW, Meijer DKF, Vore M. MRP2 is essential for estradiol-17 beta (beta-D-glucuronide) -induced cholestasis in rats. Hepatology. 2000;32:66–72. https://doi.org/10.1053/jhep.2000.8263. Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis. 2007;28:940–6. https://doi.org/10.1093/carcin/bgl249. Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A. Gastric estradiol-17beta (E2) and liver ERalpha correlate with serum E2 in the cholestatic male rat. J Endocrinol. 2013;219:39–49. https://doi.org/10.1530/JOE-13-0156. Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A. 17beta-Estradiol in the systemic circulation derives mainly from the parietal cells in cholestatic female rats. J Endocrinol Invest. 2016;39:389–400. https://doi.org/10.1007/s40618-015-0374-8. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91. https://doi.org/10.1152/physrev.00010.2008. Li XJY, Liu RP, Luo L, et al. Role of AMP-activated protein kinase alpha 1 in 17 alpha-ethinylestradiol-induced cholestasis in rats. Arch Toxicol. 2017;91:481–94. https://doi.org/10.1007/s00204-016-1697-8. Li M, Zhang X, Lu Y, et al. The nuclear translocation of transketolase inhibits the farnesoid receptor expression by promoting the binding of HDAC3 to FXR promoter in hepatocellular carcinoma cell lines. Cell Death Dis. 2020;11:31. https://doi.org/10.1038/s41419-020-2225-6. Liu N, Meng Z, Lou G, et al. Hepatocarcinogenesis in FXR-/- mice mimics human HCC progression that operates through HNF1alpha regulation of FXR expression. Mol Endocrinol. 2012;26:775–85. https://doi.org/10.1210/me.2011-1383. Liu X, Xue R, Yang C, Gu J, Chen S, Zhang S. Cholestasis-induced bile acid elevates estrogen level via farnesoid X receptor-mediated suppression of the estrogen sulfotransferase SULT1E1. J Biol Chem. 2018;293:12759–69. https://doi.org/10.1074/jbc.RA118.001789. Lu Y, Ma ZM, Zhang ZJ, et al. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut. 2014;63:170–7. https://doi.org/10.1136/gutjnl-2012-303150. Milona A, Owen BM, Cobbold JF, et al. Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function. Hepatology. 2010;52:1341–9. https://doi.org/10.1002/hep.23849. Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol. 2013;228:513–21. https://doi.org/10.1002/jcp.24158. Navarro VJ, Khan I, Bjornsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology. 2017;65:363–73. https://doi.org/10.1002/hep.28813. Pavek P. Pregnane X Receptor (PXR)-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions. Front Pharmacol. 2016;7:456. https://doi.org/10.3389/fphar.2016.00456. Qi Y, Jiang C, Cheng J, et al. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta. 2015;1851:19–29. https://doi.org/10.1016/j.bbalip.2014.04.008. Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S. Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5:289–303. https://doi.org/10.2174/1568008054863781. Shi S, Li J, Zhao X, Liu Q, Song SJ. A comprehensive review: biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry. 2021;191:112895. https://doi.org/10.1016/j.phytochem.2021.112895. Shinohara S, Fujimori K. Promotion of lipogenesis by PPAR gamma-activated FXR expression in adipocytes. Biochem Biophys Res Commun. 2020;527:49–55. https://doi.org/10.1016/j.bbrc.2020.04.075. Simons R, Gruppen H, Bovee TF, Verbruggen MA, Vincken JP. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct. 2012;3:810–27. https://doi.org/10.1039/c2fo10290k. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731–44. https://doi.org/10.1016/s0092-8674(00)00062-3. Song X, Chen Y, Valanejad L, et al. Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. J Lipid Res. 2013;54:3030–44. https://doi.org/10.1194/jlr.M038323. Song X, Vasilenko A, Chen Y, et al. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology. 2014;60:1993–2007. https://doi.org/10.1002/hep.27171. Teschke R, Eickhoff A, Schulze J, Danan G. Herb-induced liver injury (HILI) with 12,068 worldwide cases published with causality assessments by Roussel Uclaf Causality Assessment Method (RUCAM): an overview. Transl Gastroenterol Hepatol. 2021;6:51. https://doi.org/10.21037/tgh-20-149. Wang Z, Xu G, Wang H, et al. Icariside II, a main compound in Epimedii Folium, induces idiosyncratic hepatotoxicity by enhancing NLRP3 inflammasome activation. Acta Pharm Sin b. 2020;10:1619–33. https://doi.org/10.1016/j.apsb.2020.03.006. Wu W, Wang T, Sun B, et al. Xian-Ling-Gu-Bao induced inflammatory stress rat liver injury: inflammatory and oxidative stress playing important roles. J Ethnopharmacol. 2019;239:111910. https://doi.org/10.1016/j.jep.2019.111910. Xu J, Wang Y, Yin J, Yin M, Wang M, Liu J. MAFB mediates the therapeutic effect of sleeve gastrectomy for obese diabetes mellitus by activation of FXR expression. Braz J Med Biol Res. 2018;51:e7312. https://doi.org/10.1590/1414-431x20187312. Yamamoto Y, Moore R, Hess HA, et al. Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem. 2006;281:16625–31. https://doi.org/10.1074/jbc.M602723200. Zhang M, Chiang JY. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem. 2001;276:41690–9. https://doi.org/10.1074/jbc.M105117200. Zhang L, Wang T, Zhao BS, et al. Effect of 2’’-O-Rhamnosyl Icariside II, Baohuoside I and Baohuoside II in Herba Epimedii on cytotoxicity indices in HL-7702 and HepG2 Cells. Molecules. 2019;24:1263. https://doi.org/10.3390/molecules24071263. Zhang L, Xu AL, Yang S, Zhao BS, Wang T. In vitro screening and toxic mechanism exploring of leading components with potential hepatotoxicity of Herba Epimedii extracts. Toxicol in Vitro. 2020;62:104660. https://doi.org/10.1016/j.tiv.2019.104660. Zhao DS, Jiang LL, Fan YX, et al. Identification of urine tauro-beta-muricholic acid as a promising biomarker in Polygoni Multiflori Radix-induced hepatotoxicity by targeted metabolomics of bile acids. Food Chem Toxicol. 2017;108:532–42. https://doi.org/10.1016/j.fct.2017.02.030. Zhong R, Chen Y, Ling J, et al. The toxicity and metabolism properties of Herba Epimedii flavonoids on laval and adult zebrafish. Evid Based Complement Alternat Med. 2019;2019:3745051. https://doi.org/10.1155/2019/3745051. Zu Y, Yang J, Zhang C, Liu D. The pathological mechanisms of estrogen-induced cholestasis: current perspectives. Front Pharmacol. 2021;12:761255. https://doi.org/10.3389/fphar.2021.761255.