Bang Bang Time-Optimal Control for Some Two-Dimensional Bilinear Controlled Plants

Computational Mathematics and Modeling - Tập 27 - Trang 318-326 - 2016
M. S. Nikol’skii1
1Lomonosov Moscow State University, Faculty of Computation Mathematics and Cybernetics, Moscow, Russia

Tóm tắt

For a certain class of two-dimensional bilinear controlled systems, we derive efficient sufficient conditions that ensure bang bang behavior of time-optimal controls.

Tài liệu tham khảo

L. S. Pontryagin and others, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1969). V. G. Boltyanskii, Mathematical Methods of Optimal Control [in Russian], Nauka, Moscow (1969). E. B. Lee and L. Markus, Foundations of Optimal Control Theory [Russian translation], Nauka, Moscow (1972). A. A. Agrachev and Yu. L. Sachkov, Geometrical Control Theory [in Russian], Fizmatlit, Moscow (2004). T. P. Saaty, Mathematical Models of Conflict Resolution [Russian translation], Sovetskoe Radio, Moscow (1977). N. S. Nikol’skii, “Some optimal control problems linked with Richardson’s arms race model,” Problemy Dinamicheskoso Upravleniya, Maks Press, Moscow, No. 4, 113–123 (2009). Ph. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970). S. A.Vakhrameev, “Geometrical and topological methods in optimal control theory,” J. Math. Sci. Contemporary Mathematical and Its Applications. Thematic Surveys, 76, No. 5 (1955). V. N. Zhermolenko, “Trajectory funnels in two-dimensional bilinear control systems,” Izv. RAN, Teoriya i Sistemy Upravleniya, No. 2, 29–42 (2006). V. N. Zhermolenko, “Phase portraits of two-dimensional bilinear control systems,” Izv. RAN, Teoriya i Sistemy Upravleniya, No. 3, 13–23 (2006).