Bandwidth selection in kernel density estimation for interval-grouped data

TEST - 2017
Miguel Reyes1, Mario Francisco‐Fernández2, Ricardo Cao2
1Centro de Investigación en Matemáticas, De Jalisco S-N, Guanajuato, Mexico
2Research Group MODES, Departamento de Matemáticas, Facultad de Informática, Universidade da Coruña, Coruña, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bowman A (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360

Bowman A, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-plus illustrations. Oxford University Press, Oxford

Cao R (1993) Bootstrapping the mean integrated squared error. J Multivar Anal 45:137–160

Cao R, Francisco-Fernandez M, Anand A, Bastida F, Gonzalez-Andujar J (2011) Computing statistical indices for hydrothermal times using weed emergence data. J Agric Sci 149:701–712

Chacón JE, Duong T (2010) Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. TEST 19:375–398

Devroye L (1997) Universal smoothing factor selection in density estimation: theory and practice. TEST 6:223–320

Faraway J, Jhun M (1990) Bootstrap choice of bandwidth for density estimators. J Am Stat Assoc 85:1119–1122

Guidoum AC (2014) kedd: Kernel estimator and bandwidth selection for density and its derivatives. R package version 1.0.1. http://CRAN.R-project.org/package=kedd

Hall P, Marron JS (1987) Estimation of integrated squared density derivatives. Stat Probab Lett 6:109–115

Hall P, Wand MP (1996) On the accuracy of binned kernel density estimators. J Multivar Anal 56:165–184

Jang W, Loh JM (2010) Density estimation for grouped data with application to line transect sampling. Ann Appl Probab 4:893–915

Jones MC (1991) The roles of ISE and MISE in density estimation. Stat Probab Lett 12:51–56

Jones MC, Sheather SJ (1991) Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Stat Probab Lett 11:511–514

Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91:401–407

Mächler M (2014) nor1mix: normal (1-d) mixture models (S3 classes and methods). R package version 1.2-0. http://CRAN.R-project.org/package=nor1mix

Mammen E (1990) A short note on optimal bandwidth selection for kernel estimators. Stat Probab Lett 9:23–25

Marron J (1992) Bootstrap bandwidth selection. In: LePage R, Billard L (eds) Exploring the limits of bootstrap. Wiley, New York, pp 249–262

Marron JS, Wand MP (1992) Exact mean integrated squared error. Ann Stat 20:712–736

Park BU, Marron JS (1990) Comparison of data-driven bandwidth selectors. J Am Stat Assoc 85:66–72

Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

Reyes M, Francisco-Fernandez M, Cao R (2016) Nonparametric kernel density estimation for general grouped data. J Nonparametr Stat 2:235–249

Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

Scott D, Sheather SJ (1985) Kernel density estimation with binned data. Commun Stat Theory Methods 14:1353–1359

Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Series B 53:683–690

Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

Taylor C (1989) Bootstrap choice of the tuning parameter in kernel density estimators. Biometrika 76:705–712

Wand M (2014) KernSmooth: functions for kernel smoothing for Wand & Jones (1995). R package version 2.23-12. http://CRAN.R-project.org/package=KernSmooth

Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall/CRC, London