Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hình dạng băng thông của Tín hiệu Ôtoacoustic Sáng tạo Distortion-Product phản ánh sự Chỉnh tần của ốc tai ở chuột nghe bình thường
Tóm tắt
Tính chọn lọc tần số của hệ thống thính giác ở động vật có vú rất quan trọng để phân biệt các âm thanh phức tạp như giọng nói. Tính chọn lọc này xuất phát từ sự điều chỉnh sắc nét của phản ứng cơ học của ốc tai với âm thanh, điều này chủ yếu được quy cho sự khuếch đại của các rung động ốc tai bởi các tế bào lông ngoài (OHCs). Do tính phi tuyến của nó, quá trình khuếch đại cũng dẫn đến việc tạo ra các sản phẩm méo (DPs), một số trong đó phát tán ra ống tai như là các tín hiệu ôtoacoustic méo sản phẩm (DPOAEs). Tuy nhiên, hiểu biết về những tín hiệu này cung cấp ẩn chứa sự tinh chỉnh vi mô và vĩ mô của cơ chế sinh ra chúng vẫn còn chưa rõ ràng. Sử dụng chụp hình tương quan quang học để đo rung động ốc tai ở chuột, chúng tôi cho thấy rằng sự tinh chỉnh tần số của ốc tai phản ánh trong hình dạng băng thông được quan sát trong biên độ DPOAE khi tỷ lệ của hai tần số kích thích được thay đổi (ở đây gọi là "hàm tỷ lệ DPOAE"). Độ sắc nét của phân phối tỷ lệ DPOAE và các rung động ốc tai đã đồng biến với mức độ kích thích, với sự đồng nhất định về độ sắc nét được quan sát cho cả vị trí chóp và giữa của ốc tai. Việc đo các sản phẩm méo trong ốc tai cho thấy rằng sự điều chỉnh của các hàm tỷ lệ DPOAE không phải do các cơ chế định hình các sản phẩm méo ở khu vực gần nơi chúng được sinh ra. Thay vào đó, các mô phỏng mô hình đơn giản cho thấy rằng hình dạng băng thông là do một hiện tượng can thiệp sóng toàn cục hơn. Có vẻ như việc lọc các DPOAE thông qua các tương tác sóng trên một vùng không gian rộng cho phép chúng cung cấp cái nhìn về sự điều chỉnh tần số của các vị trí ốc tai đơn lẻ.
Từ khóa
Tài liệu tham khảo
Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352. https://doi.org/10.1152/physrev.2001.81.3.1305
von Békésy G (1960) Experiments in Hearing. McGraw-Hill, USA, New York
Ashmore J (2008) Cochlear outer hair cell motility. Physiol Rev 88:173–210. https://doi.org/10.1152/physrev.00044.2006
Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196. https://doi.org/10.1126/science.3966153
Dewey JB, Applegate BE, Oghalai JS (2019) Amplification and suppression of traveling waves along the mouse organ of Corti: evidence for spatial variation in the longitudinal coupling of outer hair cell-generated forces. J Neurosci 39:1805–1816. https://doi.org/10.1523/JNEUROSCI.2608-18.2019
Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231. https://doi.org/10.1121/1.1912485
Avan P, Büki B, Petit C (2013) Auditory distortions: origins and functions. Physiol Rev 93:1563–1619. https://doi.org/10.1152/physrev.00029.2012
Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45. https://doi.org/10.1007/BF00455222
Brown AM, Gaskill SA (1990) Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses. J Acoust Soc Am 88:840–849. https://doi.org/10.1121/1.399733
Fahey P, Allen J (1986) Characterization of cubic intermodulation distortion products in the cat external auditory meatus. In: Allen J, Hall J, Hubbard A et al (eds) Peripheral Auditory Mechanisms. Springer-Verlag, Berlin, pp 314–321
Harris FP, Lonsbury-Martin BL, Stagner BB et al (1989) Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio. J Acoust Soc Am 85:220–229. https://doi.org/10.1121/1.397728
Kim DO (1980) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2:297–317. https://doi.org/10.1016/0378-5955(80)90064-7
Allen JB, Fahey PF (1993) A second cochlear-frequency map that correlates distortion product and neural tuning measurements. J Acoust Soc Am 94:809–816. https://doi.org/10.1121/1.408182
Brown A, Williams D (1993) A second filter in the cochlea. In: Duifhuis J, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. World Scientific, Singapore, pp 72–77
Lukashkin AN, Smith JK, Russell IJ (2007) Properties of distortion product otoacoustic emissions and neural suppression tuning curves attributable to the tectorial membrane resonance. J Acoust Soc Am 121:337–343. https://doi.org/10.1121/1.2390670
Kanis LJ, de Boer E (1997) Frequency dependence of acoustic distortion products in a locally active model of the cochlea. J Acoust Soc Am 101:1527–1531. https://doi.org/10.1121/1.418173
Lukashkin AN, Russell IJ (2001) Origin of the bell-like dependence of the DPOAE amplitude on primary frequency ratio. J Acoust Soc Am 110:3097–3106. https://doi.org/10.1121/1.1417525
Matthews JW, Molnar CE (1986) Modeling intracochlear and ear canal distortion product (2f1–f2). In: Allen JB, Hall JL, Hubbard AE et al (eds) Peripheral Auditory Mechanisms. Springer, Berlin, pp 258–265
Neely ST, Stover LJ (1997) Generation of distortion products in a model of cochlear mechanics. In: Lewis E, Long G, Lyon R et al (eds) Diversity in Auditory Mechanics. World Scientific, Singapore, pp 434–440
Shera CA (2003) Wave interference in the generation of reflection- and distortion-source emissions. In: Gummer AW (ed) Biophysics of the Cochlea: From Molecules to Models. World Scientific, Singapore, pp 439–453
Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543. https://doi.org/10.1121/1.424364
Brown AM, Gaskill SA, Carlyon RP, Williams DM (1993) Acoustic distortion as a measure of frequency selectivity: relation to psychophysical equivalent rectangular bandwidth. J Acoust Soc Am 93:3291–3297. https://doi.org/10.1121/1.405713
Wilson US, Browning-Kamins J, Durante AS et al (2021) Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions. Int J Audiol 60:890–899. https://doi.org/10.1080/14992027.2021.1886352
Sisto R, Wilson US, Dhar S, Moleti A (2018) Modeling the dependence of the distortion product otoacoustic emission response on primary frequency ratio. J Assoc Res Otolaryngol 19:511–522. https://doi.org/10.1007/s10162-018-0681-9
Dewey JB, Altoe A, Shera CA et al (2021) Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proc Natl Acad Sci USA 118:e2025206118. https://doi.org/10.1073/pnas.2025206118
Lee HY, Raphael PD, Park J et al (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci USA 112:3128–3133. https://doi.org/10.1073/pnas.1500038112
Lee HY, Raphael PD, Xia A et al (2016) Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti. J Neurosci 36:8160–8173. https://doi.org/10.1523/JNEUROSCI.1157-16.2016
Soons JAMM, Ricci AJ, Steele CR, Puria S (2015) Cytoarchitecture of the mouse organ of corti from base to apex, determined using in situ two-photon imaging. J Assoc Res Otolaryngol 16:47–66. https://doi.org/10.1007/s10162-014-0497-1
Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569. https://doi.org/10.1152/jn.00574.2004
Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798. https://doi.org/10.1121/1.426948
Cheatham MA (2021) Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects. Hear Res 400:108143. https://doi.org/10.1016/j.heares.2020.108143
Martin GK, Stagner BB, Chung YS, Lonsbury-Martin BL (2011) Characterizing distortion-product otoacoustic emission components across four species. J Acoust Soc Am 129:3090–3103. https://doi.org/10.1121/1.3560123
Müller M, von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73. https://doi.org/10.1016/j.heares.2004.08.011
Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448:73–98. https://doi.org/10.1113/jphysiol.1992.sp019030
Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro. Hear Res 22:199–216. https://doi.org/10.1016/0378-5955(86)90096-1
Santos-Sacchi J (1989) Asymmetry in voltage-dependent movements of isolated outer hair cells from the organ of Corti. J Neurosci 9:2954–2962. https://doi.org/10.1523/jneurosci.09-08-02954.1989
Dewey JB (2022) Cubic and quadratic distortion products in vibrations of the mouse cochlear apex. JASA Express Lett 2:11440. https://doi.org/10.1121/10.0015244
Bowling T, Wen H, Meenderink SWF, Dong W (2021) Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted. Sci Rep 11:13651. https://doi.org/10.1038/s41598-021-93099-7
Bowling T, Meaud J (2018) Forward and reverse waves: Modeling distortion products in the intracochlear fluid pressure. Biophys J 114:747–757. https://doi.org/10.1016/j.bpj.2017.12.005
Dong W, Olson ES (2008) Supporting evidence for reverse cochlear traveling waves. J Acoust Soc Am 123:222–240. https://doi.org/10.1121/1.2816566
Meenderink SWF, van der Heijden M (2010) Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves. J Neurophysiol 103:1448–1455. https://doi.org/10.1152/jn.00899.2009
Moleti A, Sisto R (2008) Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions. J Acoust Soc Am 123:1495–1503. https://doi.org/10.1121/1.2836781
Shera CA, Tubis A, Talmadge CL et al (2007) Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. J Acoust Soc Am 121:1564–1575. https://doi.org/10.1121/1.2405891
Vetesník A, Gummer AW (2012) Transmission of cochlear distortion products as slow waves: a comparison of experimental and model data. J Acoust Soc Am 131:3914–3934. https://doi.org/10.1121/1.3699207
He W, Fridberger A, Porsov E, Ren T (2010) Fast reverse propagation of sound in the living cochlea. Biophys J 98:2497–2505. https://doi.org/10.1016/j.bpj.2010.03.003
Ren T (2004) Reverse propagation of sound in the gerbil cochlea. Nat Neurosci 7:333–334. https://doi.org/10.1038/nn1216
Shera CA, Talmadge CL, Tubis A (2000) Interrelations among distortion-product phase-gradient delays: their connection to scaling symmetry and its breaking. J Acoust Soc Am 108:2933–2948. https://doi.org/10.1121/1.1323234
Vavakou A, Cooper NP, van der Heijden M (2019) The frequency limit of outer hair cell motility measured in vivo. Elife 8:e47667. https://doi.org/10.7554/eLife.47667
Burwood GWS, Russell IJ, Lukashkin AN (2017) Rippling pattern of distortion product otoacoustic emissions evoked by high-frequency primaries in guinea pigs. J Acoust Soc Am 142:855–862. https://doi.org/10.1121/1.4998584
Mills DM, Rubel EW (1997) Development of distortion product emissions in the gerbil: “Filter” response and signal delay. J Acoust Soc Am 101:395–411. https://doi.org/10.1121/1.417985
Ren T, He W (2020) Two-tone distortion in reticular lamina vibration of the living cochlea. Commun Biol 3:35. https://doi.org/10.1038/s42003-020-0762-2
Rhode WS (2007) Distortion product otoacoustic emissions and basilar membrane vibration in the 6–9 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 122:2725–2737. https://doi.org/10.1121/1.2785034
Cooper NP (1996) Two-tone suppression in cochlear mechanics. J Acoust Soc Am 99:3087–3098. https://doi.org/10.1121/1.414795
Nuttall AL, Dolan DF (1993) Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig. J Acoust Soc Am 93:390–400. https://doi.org/10.1121/1.405619
Rhode WS, Cooper NP (1993) Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae. Hear Res 66:31–45. https://doi.org/10.1016/0378-5955(93)90257-2
Dong W, Olson ES (2005) Two-tone distortion in intracochlear pressure. J Acoust Soc Am 117:2999–3015. https://doi.org/10.1121/1.1880812
Cooper NP, Rhode WS (1997) Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J Neurophysiol 78:261–270. https://doi.org/10.1152/jn.1997.78.1.261
Shera CA, Guinan JJ (2007) Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. J Acoust Soc Am 121:1003–1016. https://doi.org/10.1121/1.2404620
Fahey PF, Stagner BB, Martin GK (2006) Mechanism for bandpass frequency characteristic in distortion product otoacoustic emission generation. J Acoust Soc Am 119:991–996. https://doi.org/10.1121/1.2146088
Martin GK, Stagner BB, Dong W, Lonsbury-Martin BL (2016) Comparing distortion product otoacoustic emissions to intracochlear distortion products inferred from a noninvasive assay. J Assoc Res Otolaryngol 17:271–287. https://doi.org/10.1007/s10162-016-0552-1
Martin GK, Stagner BB, Lonsbury-Martin BL (2013) Time-domain demonstration of distributed distortion-product otoacoustic emission components. J Acoust Soc Am 134:342–355. https://doi.org/10.1121/1.4809676
Charaziak KK, Shera CA (2021) Reflection-source emissions evoked with clicks and frequency sweeps: comparisons across levels. J Assoc Res Otolaryngol 22:641–658. https://doi.org/10.1007/s10162-021-00813-3
Shera CA, Charaziak KK (2019) Cochlear frequency tuning and otoacoustic emissions. Cold Spring Harb Perspect Med 9:a033498. https://doi.org/10.1101/cshperspect.a033498
Cooper NP, Rhode WS (1995) Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res 82:225–243. https://doi.org/10.1016/0378-5955(94)00180-x
Dong W, Xia A, Raphael PD et al (2018) Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry. J Neurophysiol 120:2847–2857. https://doi.org/10.1152/jn.00702.2017
Recio-Spinoso A, Oghalai JS (2017) Mechanical tuning and amplification within the apex of the guinea pig cochlea. J Physiol 595:4549–4561. https://doi.org/10.1113/JP273881
Schneider S, Schoonhoven R, Prijs VF (2001) Amplitude of distortion product otoacoustic emissions in the guinea pig in f(1)- and f(2)-sweep paradigms. Hear Res 155:21–31. https://doi.org/10.1016/s0378-5955(01)00239-8
Mills DM (2000) Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils. J Acoust Soc Am 107:2586–2602. https://doi.org/10.1121/1.428646
Ohlms LA, Lonsbury-Martin BL, Martin GK (1991) Acoustic-distortion products: separation of sensory from neural dysfunction in sensorineural hearing loss in human beings and rabbits. Otolaryngol Head Neck Surg 104:159–174. https://doi.org/10.1177/019459989110400203
Konrad-Martin D, Norton SJ, Mascher KE, Tempel BL (2001) Effects of PMCA2 mutation on DPOAE amplitudes and latencies in deafwaddler mice. Hear Res 151:205–220. https://doi.org/10.1016/S0378-5955(00)00228-8
Le Calvez S, Guilhaume A, Romand R et al (1998) CD1 hearing-impaired mice. II: Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy. Hear Res 120:51–61. https://doi.org/10.1016/S0378-5955(98)00051-3
Lukashkin AN, Lukashkina VA, Legan PK et al (2004) Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic TectaΔENT/ΔENT mice. J Neurophysiol 91:163–171. https://doi.org/10.1152/jn.00680.2003
Brown AM, Williams DM, Gaskill SA (1993) The effect of aspirin on cochlear mechanical tuning. J Acoust Soc Am 93:3298–3307. https://doi.org/10.1121/1.405714
Engdahl B, Kemp DT (1996) The effect of noise exposure on the details of distortion product otoacoustic emissions in humans. J Acoust Soc Am 99:1573–1587. https://doi.org/10.1121/1.414733
Stover LJ, Neely ST, Gorga MP (1999) Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears. J Acoust Soc Am 106:2669–2678. https://doi.org/10.1121/1.428097
Dewey JB, Xia A, Müller U et al (2018) Mammalian auditory hair cell bundle stiffness affects frequency tuning by increasing coupling along the length of the cochlea. Cell Rep 23:2915–2927. https://doi.org/10.1016/j.celrep.2018.05.024
Russell IJ, Legan PK, Lukashkina VA et al (2007) Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 10:215–223. https://doi.org/10.1038/nn1828
Moleti A, Sisto R (2020) Does the “reticular lamina nonlinearity” contribute to the basal DPOAE source? J Assoc Res Otolaryngol 21:463–473. https://doi.org/10.1007/s10162-020-00771-2
