Bandgap tuning of Monolayer MoS2(1-x)Se2x alloys by optimizing parameters
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w
Mann, 2014, 2‐Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2 (1–x) Se2x monolayers, Adv. Mater., 26, 1399, 10.1002/adma.201304389
Liu, 2019, Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS 2 monolayer, Nano Research, 12, 463, 10.1007/s12274-018-2243-1
Mak, 2013, Tightly bound trions in monolayer MoS2, Nat. Mater., 12, 207, 10.1038/nmat3505
RadisavljevicB, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Chang, 2014, Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection, ACS Nano, 8, 8582, 10.1021/nn503287m
Zheng, 2017, High‐mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition, Adv. Mater., 29, 1604540, 10.1002/adma.201604540
Li, 2014, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets, Acc. Chem. Res., 47, 1067, 10.1021/ar4002312
Bang, 2014, Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets, ACS Appl. Mater. Interfaces, 6, 7084, 10.1021/am4060222
Tan, 2015, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chem. Soc. Rev., 44, 2713, 10.1039/C4CS00182F
Allendorf, 2009, 93
Leese, 2009, 535
Nihan Kosku, 2015, Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition, Nano-Micro Lett., 8
Chen, 2018
Yin, 2018
Wang, 2014, Chemical vapor deposition growth of crystalline monolayer MoSe2, ACS Nano, 8, 5125, 10.1021/nn501175k
Pierson, 1999, 108
Pierson, 1999, 68
Feng, 2015, Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition, ACS Nano, 9, 7450, 10.1021/acsnano.5b02506
Kranthi Kumar, 2015, A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2, Nanoscale, 7, 7802, 10.1039/C4NR07080A
Zhao, 2017, Large-area synthesis of monolayer MoSe 2 films on SiO 2/Si substrates by atmospheric pressure chemical vapor deposition, RSC Adv., 7, 27969, 10.1039/C7RA03642F
Meng, 2017, Repairing atomic vacancies in single-layer MoSe 2 field-effect transistor and its defect dynamics, npj Quantum Materials, 2, 16, 10.1038/s41535-017-0018-7
Pawbake, 2016, Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies, Nanoscale, 8, 3008, 10.1039/C5NR07401K
O'Brien, 2015, Low wavenumber Raman spectroscopy of highly crystalline MoSe2 grown by chemical vapor deposition, Phys. Status Solidi, 252, 2385, 10.1002/pssb.201552225
Bachmatiuk, 2014, Chemical vapor deposition of twisted bilayer and few-layer MoSe2 over SiO x substrates, Nanotechnology, 25, 365603, 10.1088/0957-4484/25/36/365603
Kang, 2013, Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing, J. Appl. Phys., 113, 143703, 10.1063/1.4799126
Huang, 2013, Large-area synthesis of highly crystalline WSe2 monolayers and device applications, ACS Nano, 8, 923, 10.1021/nn405719x
Wang, 2018, Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure, Nanotechnology, 29, 314001, 10.1088/1361-6528/aac397
Feng, 2015, Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H-2 atmosphere, ACS Appl. Mater. Interfaces, 7, 22587, 10.1021/acsami.5b07038
Su, 2014, Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys, Frontiers in Energy Research, 2
Kang, 2015, The growth scale and kinetics of WS 2 monolayers under varying H 2 concentration, Sci. Rep., 5, 13205, 10.1038/srep13205
Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798
Najmaei, 2013, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mater., 12, 754, 10.1038/nmat3673
Wang, 2014, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition, Chem. Mater., 26, 6371, 10.1021/cm5025662
Shanshan, 2016, Substrate control for large area continuous films of monolayer MoS 2 by atmospheric pressure chemical vapor deposition, Nanotechnology, 27
Senthilkumar, 2014, Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers, Nano Research, 7, 1759, 10.1007/s12274-014-0535-7
Ma, 2014, Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange, ACS Nano, 8, 4672, 10.1021/nn5004327
Yin, 2018, Hydrogen-assisted post-growth substitution of tellurium into molybdenum disulfide monolayers with tunable compositions, Nanotechnology, 29, 145603, 10.1088/1361-6528/aaabe8
Li, 2014, Growth of alloy MoS2 x Se2 (1–x) nanosheets with fully tunable chemical compositions and optical properties, J. Am. Chem. Soc., 136, 3756, 10.1021/ja500069b
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805