Ballistic ceramics and analysis of their mechanical properties for armour applications: A review
Tài liệu tham khảo
Appleby-Thomas, 2017, On the effects of powder morphology on the post-comminution ballistic strength of ceramics, Int. J. Impact Eng., 100, 46, 10.1016/j.ijimpeng.2016.10.008
Guo, 2016, Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic, Compos. Struct., 157, 163, 10.1016/j.compstruct.2016.08.025
Pittari, 2015, The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics, J. Eur. Ceram. Soc., 35, 4411, 10.1016/j.jeurceramsoc.2015.08.027
Bresciani, 2018, An analytical model for ballistic impacts against ceramic tiles, Ceram. Int., 44, 21249, 10.1016/j.ceramint.2018.08.172
Akella, 2017, Studies for improved damage tolerance of ceramics against ballistic impact using layers, Procedia Eng., 173, 244, 10.1016/j.proeng.2016.12.006
Dancer, 2019, Characterisation of damage mechanisms in oxide ceramics indented at dynamic and quasi-static strain rates, J. Eur. Ceram. Soc., 39, 4936, 10.1016/j.jeurceramsoc.2019.06.054
Rahbek, 2017, Effect of composite covering on ballistic fracture damage development in ceramic plates, Int. J. Impact Eng., 99, 58, 10.1016/j.ijimpeng.2016.09.010
Clayton, 2016, Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics, Def. Technol., 12, 334, 10.1016/j.dt.2016.02.004
Jiusti, 2017, Ballistic performance of Al2O3 mosaic armors with gap-filling materials, Ceram. Int., 43, 2697, 10.1016/j.ceramint.2016.11.087
Appleby-Thomas, 2019, A comparison of the ballistic behaviour of conventionally sintered and additively manufactured alumina, Def. Technol.
Chabera, 2015, Comparison of numerical and experimental study of armour system based on alumina and silicon carbide ceramics, Bull. Pol. Acad. Sci. Tech. Sci., 63, 363
da Silva, 2014, Blindagens cerâmicas para aplicações balísticas: uma revisão, Cerâmica, 60, 323, 10.1590/S0366-69132014000300003
Kaufmann, 2003, Influence of material properties on the ballistic performance of ceramics for personal body armour, Shock Vib., 10, 51, 10.1155/2003/357637
Yadav, 2016, Body armour materials: from steel to contemporary biomimetic systems, RSC Adv., 6, 115145, 10.1039/C6RA24016J
Medvedovski, 2010, Ballistic performance of armour ceramics: influence of design and structure. Part 1, Ceram. Int., 36, 2103, 10.1016/j.ceramint.2010.05.021
Medvedovski, 2010, Ballistic performance of armour ceramics: influence of design and structure. Part 2, Ceram. Int., 36, 2117, 10.1016/j.ceramint.2010.05.022
Benitez, 2017, Transparent ceramic and glass-ceramic materials for armor applications, Ceram. Int., 43, 13031, 10.1016/j.ceramint.2017.07.205
Huang, 2016, Effect of mechanical properties on the ballistic resistance capability of Al2O3-ZrO2 functionally graded materials, Ceram. Int., 42, 12946, 10.1016/j.ceramint.2016.05.067
Silva, 2014, Alumina-based ceramics for armor application: mechanical characterization and ballistic testing, J. Ceram., 2014, 1, 10.1155/2014/618154
Hu, 2017, Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems, Ceram. Int., 43, 10368, 10.1016/j.ceramint.2017.05.071
Crouch, 2015, Characterisation, significance and detection of manufacturing defects in Reaction Sintered Silicon Carbide armour materials, Ceram. Int., 41, 10.1016/j.ceramint.2015.06.083
Hallam, 2015, The correlation of indentation behaviour with ballistic performance for spark plasma sintered armour ceramics, J. Eur. Ceram. Soc., 35, 2243, 10.1016/j.jeurceramsoc.2014.11.035
Karandikar, 2009, 163
Dresch, 2021, Improving the flexural-strength-to-density ratio in alumina ceramics with the addition of silicon nitride, Ceram. Int., 47, 10.1016/j.ceramint.2020.09.260
Savio, 2019, Microstructure and ballistic performance of hot pressed & reaction bonded boron carbides against an armour piercing projectile, Adv. Appl. Ceram., 118, 264, 10.1080/17436753.2018.1564416
Vargas-Gonzalez, 2010, Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics, Int. J. Appl. Ceram. Technol., 7, 643, 10.1111/j.1744-7402.2010.02501.x
Blumer, 2018, The influence of microstructure on the static and dynamic strength of transparent Magnesium Aluminate Spinel (MgAl2O4), J. Eur. Ceram. Soc., 38, 3618, 10.1016/j.jeurceramsoc.2018.03.037
Krell, 2014, Order of influences on the ballistic resistance of armor ceramics and single crystals, Mater. Sci. Eng., A, 597, 422, 10.1016/j.msea.2013.12.101
Haney, 2013, Damage mechanisms perspective on superior ballistic performance of spinel over sapphire, Exp. Mech., 53, 31, 10.1007/s11340-012-9634-0
Lasalvia, 2010, Beyond hardness: ceramics and ceramic-based composites for protection, JOM (J. Occup. Med.), 62, 16
Goel, 2014, Stress wave micro-macro attenuation in ceramic plates made of tiles during ballistic impact, Int. J. Mech. Sci., 83, 30, 10.1016/j.ijmecsci.2014.03.020
Mirkhalaf, 2019, Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications, Int. J. Solid Struct., 158, 52, 10.1016/j.ijsolstr.2018.08.025
Tepeduzu, 2019, Ballistic performance of ceramic/composite structures, Ceram. Int., 45, 1651, 10.1016/j.ceramint.2018.10.042
Rosenberg, 2012
Singh, 2017, Future armour materials and technologies for combat platforms, Defence Sci. J., 67, 412, 10.14429/dsj.67.11468
Gallo, 2019, Transparent glass-ceramics for ballistic protection: materials and challenges, J. Mater. Res. Technol., 8, 3357, 10.1016/j.jmrt.2019.05.006
Bilisik, 2017, Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: a review, Textil. Res. J., 87, 2275, 10.1177/0040517516669075
Hazell
Wu, 2020, Ballistic impact performance of SiC ceramic-dyneema fiber composite materials, Ann. Mater. Sci. Eng., 2020
Cavallaro, 2011, Soft body Armor : an Overview of materials , manufacturing , testing , and ballistic impact dynamics naval undersea warfare center division, NUWC-NPT Tech. Rep., 12, 1
Monteiro, 2018, Performance of plain woven jute fabric-reinforced polyester matrix composite in multilayered ballistic system, Polymers, 10, 1, 10.3390/polym10030230
da Luz, 2015, Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric, Mater. Res., 18, 170, 10.1590/1516-1439.358914
Venkatesan, 2017, Ballistic performance of bilayer alumina/aluminium and silicon carbide/aluminium armours, 671
Yu, 2012, Simulation on ballistic performance of ceramic/metal composite armor, Adv. Mater. Res., 581–582, 759
Lóh, 2020, Densified alumina obtained by two-step sintering: impact of the microstructure on mechanical properties, Ceram. Int., 46, 12740, 10.1016/j.ceramint.2020.02.042
Haynes, 2018, Design and processing of alumina plate composites for ballistic nacre alumina structures, MRS Adv, 3, 957, 10.1557/adv.2017.631
Akella, 2015, Composite armour - a review, J. Indian Inst. Sci., 95, 297
Figueiredo, 2018, Response to ballistic impact of alumina-UHMWPE composites, Mater. Res., 21, 10.1590/1980-5373-mr-2017-0959
Medvedovski, 2006, Lightweight ceramic composite armour system, Adv. Appl. Ceram., 105, 241, 10.1179/174367606X113537
Savio, 2014, Ballistic performance of alumina and zirconia-toughened alumina against 7.62 armour piercing projectile, Defence Sci. J., 64, 464, 10.14429/dsj.64.6745
Zhang, 2010, On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target, Mater. Des., 31, 1945, 10.1016/j.matdes.2009.10.046
Nahme, 1994, Determination of the dynamic material properties of shock loaded silicon-nitride, 765
Yeckley, 2012
Yeckley, 2006
McEntire, 2016, Processing and characterization of silicon nitride bioceramics, Bioceram. Dev. Appl., 6, 1, 10.4172/2090-5025.1000093
Liu, 2020, Effect of rare earth oxides addition on the mechanical properties and coloration of silicon nitride ceramics, J. Eur. Ceram. Soc., 40, 1132, 10.1016/j.jeurceramsoc.2019.11.058
Yang, 2019, Microstructure and properties of Si3N4 foam ceramics modified by in-situ self-grown nanowires, Ceram. Int., 45, 16725, 10.1016/j.ceramint.2019.05.046
Zhu, 2008, Textured silicon nitride: processing and anisotropic properties, Sci. Technol. Adv. Mater., 9, 10.1088/1468-6996/9/3/033001
Swab, 2017
Kedir, 2016, Foreign object damage in an oxide/oxide ceramic matrix composite (CMC) under prescribed tensile loading, vol. 6, 1
Huang, 2007, A study on toughening and strengthening of Mg-Al spinel transparent ceramics, Key Eng. Mater., 336–338 II, 1207, 10.4028/www.scientific.net/KEM.336-338.1207
Sigit, 2013, Characteristics of heat treated Al7Si-Mg-Zn - 5 wt.% SiC squeeze casted composite with variation of mg content for tactical vehicle application, Adv. Mater. Res., 789, 198, 10.4028/www.scientific.net/AMR.789.198
Machry, 2021, Manufacturing of fiber-reinforced ceramic matrix composites by filament winding and freeze gelation
Kırmızı, 2019, Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites, Compos. B Eng., 164, 345, 10.1016/j.compositesb.2018.11.076
Zhang, 2019, Influence of prestress on ballistic performance of bi-layer ceramic composite armors: experiments and simulations, Compos. Struct., 227, 111258, 10.1016/j.compstruct.2019.111258
Braga, 2018, Effect of the impact geometry in the ballistic trauma absorption of a ceramic multilayered armor system, J. Mater. Res. Technol., 7, 554, 10.1016/j.jmrt.2018.06.019
Tasdemirci, 2012, The effect of the interlayer on the ballistic performance of ceramic/composite armors: experimental and numerical study, Int. J. Impact Eng., 44, 1, 10.1016/j.ijimpeng.2011.12.005
Cui, 2017, Effect of ceramic properties and depth-of-penetration test parameters on the ballistic performance of armour ceramics, Defence Sci. J., 67, 260, 10.14429/dsj.67.10664
Harris, 2017, Ballistic testing of surface-treated alumina and silicon carbide with improved adhesive bond strength, Int. J. Appl. Ceram. Technol., 14, 323, 10.1111/ijac.12668
Eftekhari, 2018, Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3@amorphous alumina nanocomposite core/shell structure, J. Eur. Ceram. Soc., 38, 3297, 10.1016/j.jeurceramsoc.2018.02.038
Neuman, 2017, A high strength alumina-silicon carbide-boron carbide triplex ceramic, Ceram. Int., 43, 7958, 10.1016/j.ceramint.2017.03.104
Lamouri, 2017, Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Boletín La Soc. Española Cerámica y Vidr., 56, 47, 10.1016/j.bsecv.2016.10.001
Milak, 2015, The influence of dopants in the grain size of alumina - a review, Mater. Sci. Forum, 820, 280, 10.4028/www.scientific.net/MSF.820.280
Armor, 2006
2006
Smallman, 1999
Heimann
Rashed, 2016, Investigation on high-velocity impact performance of multi-layered alumina ceramic armors with polymeric interlayers, J. Compos. Mater., 50, 3561, 10.1177/0021998315622982
2015
Fabris, 2020, Effect of MgO·Al2O3·SiO2 glass-ceramic as sintering aid on properties of alumina armors, Mater. Sci. Eng., A, 781, 10.1016/j.msea.2020.139237
Rahbek, 2019, Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles, Int. J. Impact Eng., 133, 103332, 10.1016/j.ijimpeng.2019.103332
Jones, 2020, Ballistic evaluation and damage characterization of 3-D printed, alumina-based ceramics for light armor applications, Int. J. Appl. Ceram. Technol., 17, 424, 10.1111/ijac.13428
Kędzierski, 2015, Optimization of two-component armour, Bull. Pol. Acad. Sci. Tech. Sci., 63, 173
Savio, 2018, Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test, Int. J. Impact Eng., 113, 161, 10.1016/j.ijimpeng.2017.11.020
Polla, 2019, Desempenho balístico de estruturas multicamadas à base de alumina/epóxi, Cerâmica, 65, 207, 10.1590/0366-69132019653742457
Monteiro, 2016, How effective is a convex Al2O3-Nb2O5 ceramic armor?, Ceram. Int., 42, 7844, 10.1016/j.ceramint.2015.12.147
Barry Carter, 2007
Durand
Noviyanto, 2016, Effect of sintering atmosphere on the grain growth and hardness of SiC/polysilazane ceramic composites, Adv. Appl. Ceram., 115, 272, 10.1080/17436753.2015.1136124
Kim, 2017, Microstructure and high-temperature strength of silicon carbide with 2000 ppm yttria, J. Eur. Ceram. Soc., 37, 4449, 10.1016/j.jeurceramsoc.2017.07.002
Cho, 2017, Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics, J. Eur. Ceram. Soc., 37, 3475, 10.1016/j.jeurceramsoc.2017.04.050
Eom, 2016, Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia, J. Am. Ceram. Soc., 99, 1735, 10.1111/jace.14114
Krishnan, 2010, Numerical simulation of ceramic composite armor subjected to ballistic impact, Compos. B Eng., 41, 583, 10.1016/j.compositesb.2010.10.001
Hayun, 2012, Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS), Ceram. Int., 38, 6335, 10.1016/j.ceramint.2012.05.003
Tamari, 1995, Effect of spark plasma sintering on densification and mechanical properties of silicon carbide, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal Ceram. Soc. Japan., 103, 740, 10.2109/jcersj.103.740
She, 1993, Hot isostatic pressing of α-silicon carbide ceramics, Ceram. Int., 19, 347, 10.1016/0272-8842(93)90048-V
Dong, 1996, Hot isostatic pressing and post-hot isostatic pressing of SiC-β-sialon composites, Mater. Lett., 29, 259, 10.1016/S0167-577X(96)00155-3
Ray, 2008, 85
J.W.M., 2002
Sabadin, 2018, Development and validation of a numerical model for the simulation of high-velocity impacts on advanced composite armor systems, Nonlinear Dynam., 91, 1791, 10.1007/s11071-017-3981-4
Delobel, 2020, Effects of density on the mechanical properties of spark plasma sintered β-SiC, Ceram. Int., 10.1016/j.ceramint.2020.02.101
Shen, 2019, Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet, Compos. Struct., 213, 209, 10.1016/j.compstruct.2019.01.078
Flinders, 2005, High-toughness silicon carbide as armor, J. Am. Ceram. Soc., 88, 2217, 10.1111/j.1551-2916.2005.00415.x
Luo, 2020, The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile, Mater. Des., 191, 108659, 10.1016/j.matdes.2020.108659
Liu, 2013, Ballistic performance of liquid-phase sintered silicon carbide, Ceram. Int., 39, 8253, 10.1016/j.ceramint.2013.04.010
Suri
Zhang, 2001, Crystal structure of new rare-earth boron-rich solids: REB28.5C4, J. Alloys Compd., 329, 168, 10.1016/S0925-8388(01)01581-X
Balakrishnarajan, 2007, Structure and bonding in boron carbide: the invincibility of imperfections, New J. Chem., 31, 473, 10.1039/b618493f
Greenwood, 1997
Cheng, 2017, Structure and mechanical properties of boron-rich boron carbides, J. Eur. Ceram. Soc., 37, 4514, 10.1016/j.jeurceramsoc.2017.06.017
Sikalidis, 2011
Sonber, 2015, Tribological properties of boron carbide in sliding against WC ball, Int. J. Refract. Metals Hard Mater., 51, 110, 10.1016/j.ijrmhm.2015.03.010
Thévenot, 1990, Boron carbide—a comprehensive review, J. Eur. Ceram. Soc., 6, 205, 10.1016/0955-2219(90)90048-K
Sairam, 2014, Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, Int. J. Refract. Metals Hard Mater., 42, 185, 10.1016/j.ijrmhm.2013.09.004
Sonber, 2013, Synthesis, densification and characterization of boron carbide, Trans. Indian Ceram. Soc., 72, 100, 10.1080/0371750X.2013.817755
Hogan, 2017, Fragmentation of an advanced ceramic under ballistic impact: mechanisms and microstructure, Int. J. Impact Eng., 102, 47, 10.1016/j.ijimpeng.2016.12.008
Orphal, 1997, Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s, Int. J. Impact Eng., 19, 1, 10.1016/0734-743X(95)00064-H
Victor, 2019, In situ TEM observations of ion irradiation damage in boron carbide, J. Eur. Ceram. Soc., 39, 726, 10.1016/j.jeurceramsoc.2018.11.011
Ojalvo, 2020, Processing of orthotropic and isotropic superhard B4C composites reinforced with reduced graphene oxide, J. Eur. Ceram. Soc., 40, 3406, 10.1016/j.jeurceramsoc.2020.02.027
Yin, 2019, Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering, Ceram. Int., 45, 23781, 10.1016/j.ceramint.2019.08.095
Dutto, 2019, Reaction-bonded B4C/SiC composites synthesized by microwave heating, Int. J. Appl. Ceram. Technol., 16, 1287, 10.1111/ijac.13211
Chen, 2003, Shock-induced localized amorphization in boron carbide, Science, 299, 1563, 10.1126/science.1080819
Holmquist, 1999, 224
Sternberg, 1997, A note on the high velocity penetration of aluminum nitride, Int. J. Impact Eng., 19, 647, 10.1016/S0734-743X(97)00002-X
Thevenot, 1991, A review on boron carbide, Key Eng. Mater., 56–57, 59, 10.4028/www.scientific.net/KEM.56-57.59
Schwetz, 1997, Mechanical properties of injection molded B4C-C ceramics, J. Solid State Chem., 133, 68, 10.1006/jssc.1997.7316
Zhou, 2017, Microstructure and mechanical properties of reaction bonded B4C-SiC composites: the effect of polycarbosilane addition, Ceram. Int., 43, 5887, 10.1016/j.ceramint.2017.01.066
Rehman, 2015, Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid, Ceram. Int., 41, 1903, 10.1016/j.ceramint.2014.09.115
Savio, 2011, An experimental study on ballistic performance of boron carbide tiles, Int. J. Impact Eng., 38, 535, 10.1016/j.ijimpeng.2011.01.006
Chao, 2019, The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction, Compos. B Eng., 161, 627, 10.1016/j.compositesb.2018.12.147
Xie, 2016, Microstructural characterization of a commercial hot-pressed boron carbide armor plate, J. Am. Ceram. Soc., 99, 2834, 10.1111/jace.14295
Gao, 2018, Influence of epoxy adhesive layer on impact performance of TiB2-B4C composites armor backed by aluminum plate, Int. J. Impact Eng., 122, 60, 10.1016/j.ijimpeng.2018.07.017
Normandia, 2002, An Overview of ballistic testing methods of ceramic materials, Ceram. Armor Mater. by Des., 113
Popa, 2018, Considerations on dop (depth of penetration) test for evaluation of ceramics materials used in ballistic protection, ACTA Univ. Cibiniensis., 69, 162, 10.1515/aucts-2017-0021
Crouch
Rozenberg, 1988, The relation between ballastic efficiency and compressive strength of ceramic tiles, Int. J. Impact Eng., 7, 357, 10.1016/0734-743X(88)90035-8
Dancygier, 2002, Penetration mechanisms of non-deforming projectiles into reinforced concrete barriers, Struct. Eng. Mech., 13, 171, 10.12989/sem.2002.13.2.171
forrestal, 1986, Penetration into dry porous rock, Int. J. Solid Struct., 22, 1485, 10.1016/0020-7683(86)90057-0
Orphal, 1997, Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s, Int. J. Impact Eng., 19, 1, 10.1016/0734-743X(95)00064-H
Subramanian, 1995, Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s, Int. J. Impact Eng., 17, 807, 10.1016/0734-743X(95)99901-3
Orphal, 1996, Penetration of confined aluminum nitride targets by tungsten long rods at 1.5–4.5 km/s, Int. J. Impact Eng., 18, 355, 10.1016/0734-743X(95)00045-C
Hohler, 1995, Hypervelocity penetration of tungsten sinter-alloy rods into aluminum, Int. J. Impact Eng., 17, 409, 10.1016/0734-743X(95)99866-P
Sotskiy, 2011, Experimental and theoretical estimate OF impact conditions effects ON projectiles deceleration history IN target, 1468
Zhai, 2020, Interface defeat studies of long-rod projectile impacting on ceramic targets, Def. Technol., 16, 50, 10.1016/j.dt.2019.05.021
Lundberg, 2016, Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets, Def. Technol., 12, 263, 10.1016/j.dt.2016.02.002
Zhang, 2018, Criterion for interface defeat to penetration transition of long rod projectile impact on ceramic armor, Thin-Walled Struct., 126, 266, 10.1016/j.tws.2017.04.016
Bavdekar, 2019, A unified model for dwell and penetration during long rod impact on thick ceramic targets, Int. J. Impact Eng., 131, 304, 10.1016/j.ijimpeng.2019.05.014
Dehn, 1996, Modeling armor that uses interface defeat, 1139
Anderson, 2005, An analytical model for dwell and interface defeat, Int. J. Impact Eng., 31, 1119, 10.1016/j.ijimpeng.2004.07.013
Aydelotte, 2015, Impact and penetration of SiC: the role of rod strength in the transition from dwell to penetration, Procedia Eng., 103, 19, 10.1016/j.proeng.2015.04.004
Partom, 2012, Modeling interface defeat and dwell in long rod penetration into ceramic targets, 76, 10.1063/1.3686225
Holmquist, 2010, Mechanics of dwell and post-dwell penetration, Adv. Appl. Ceram., 109, 467, 10.1179/174367509X12535211569512
Yuan, 2017, 65
Holland, 2015, Effect of design on the performance of steel-alumina bilayers and trilayers subject to ballistic impact, Mech. Mater., 91, 241, 10.1016/j.mechmat.2015.05.002
Rajagopal, 2014, Oblique ballistic impact behavior of composites, Int. J. Damage Mech., 23, 453, 10.1177/1056789513499268
Hohler, 2001, Comparative analysis of oblique impact on ceramic composite systems, Int. J. Impact Eng., 26, 333, 10.1016/S0734-743X(01)00102-6
Yaziv, 2001, Oblique penetration in ceramic targets, 7
Ben-Dor, 2000, Optimization of two component ceramic armor for a given impact velocity, Theor. Appl. Fract. Mech., 33, 185, 10.1016/S0167-8442(00)00013-6
Savio, 2018, Methodology to measure the protective areal density of ceramic tiles against projectile impact, Defence Sci. J., 68, 76, 10.14429/dsj.68.11136
Huang, 2006, DOP test evaluation of the ballistic performance of armor ceramics against long rod penetration, AIP Conf. Proc., 845 II, 1383, 10.1063/1.2263582
Bolduc, 2016, Ballistic evaluation of nanocomposite ceramic, Passages, 1
Roberson, 2012, Resistance of different ceramic materials to penetration by a tungsten carbide cored projectile, 153
Swab, 2005, vol. 26
Roberson, 2012, Resistance of silicon carbide to penetration by a tungsten carbide cored projectile, 165, 10.1002/9781118406793.ch14
Lach, 1993, Mechanical behaviour of ceramics and their ballistic properties, CFI Ceram. Forum Int., 70, 486
Madhu, 2005, An experimental study of penetration resistance of ceramic armour subjected to projectile impact, Int. J. Impact Eng., 32, 337, 10.1016/j.ijimpeng.2005.03.004
Moynihan
Reaugh, 1999, Impact studies of five ceramic materials and pyrex, Int. J. Impact Eng., 23, 771, 10.1016/S0734-743X(99)00121-9
Crouch, 2019, Body armour – new materials, new systems, Def. Technol., 15, 241, 10.1016/j.dt.2019.02.002
Sherman
Savio, 2017, Effect of tile thickness and projectile velocity on the ballistic performance of boron carbide against 12.7 mm AP, Procedia Eng., 173, 286, 10.1016/j.proeng.2016.12.015
Hogan, 2015, The effects of microstructure and confinement on the compressive fragmentation of an advanced ceramic, J. Am. Ceram. Soc., 98, 902, 10.1111/jace.13353
Flinders, 2012, 37
Woodward, 1994, A study of fragmentation in the ballistic impact of ceramics, Int. J. Impact Eng., 15, 605, 10.1016/0734-743X(94)90122-2
Grady, 2010, 1
de Assis, 2017, AVALIAÇÃO DA IMPEDÂNCIA DE CHOQUE DA BLINDAGEM MULTICAMADA COM COMPÓSITO DE MATRIZ POLIÉSTER REFORÇA COM TECIDO DE JUTA, 1059
Feng, 2012, Experimental investigation on delayed failure of alumina under shock compression, Adv. Appl. Ceram., 111, 237, 10.1179/1743676112Y.0000000004
Ravid, 2012, 145
Matchen, 1996, Applications of ceramics in armor products, Key Eng. Mater., 124, 333, 10.4028/www.scientific.net/KEM.122-124.333
Association of Test Laboratories for Bullet Resistant Materials and Constructions, 2006, 1
U.S. Department of Justice, 2008
Russian Federation, 2017, 1
Associação Brasileira de Normas Tecnicas, 2005, 1
Ben-Dor, 2005, Ballistic impact: recent advances in analytical modeling of plate penetration dynamics-a review, Appl. Mech. Rev., 58, 355, 10.1115/1.2048626
Popov, 2020, The relative thickness of the barriers and its fundamental importance in armored ballistics, J. Phys. Conf. Ser., 1459, 10.1088/1742-6596/1459/1/012007
Cao, 2020, Experiments and simulations of the ballistic response of ceramic composite armors, J. Mech. Sci. Technol., 34, 2783, 10.1007/s12206-020-0611-8
Larsen, 2011, The effect of body armor on performance, thermal stress, and exertion: a critical review, Mil. Med., 176, 1265, 10.7205/MILMED-D-10-00470
Rice, 1994, Hardness–grain‐size relations in ceramics, J. Am. Ceram. Soc., 77, 2539, 10.1111/j.1151-2916.1994.tb04641.x
Li, 2015, On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets, Int. J. Impact Eng., 83, 37, 10.1016/j.ijimpeng.2015.04.003
Zhao, 2016, Directional amorphization of boron carbide subjected to laser shock compression, Proc. Natl. Acad. Sci. U.S.A., 113, 12088, 10.1073/pnas.1604613113
Emin, 1988, Structure and single-phase regime of boron carbides, Phys. Rev. B, 38, 6041, 10.1103/PhysRevB.38.6041
Woolmore, 2012, 175
Domnich, 2002, Phase transformations in silicon under contact loading, Rev. Adv. Mater. Sci., 3, 1
Hazell, 2013, The effect of gilding jacket material on the penetration mechanics of a 7.62 mm armour-piercing projectile, Int. J. Impact Eng., 54, 11, 10.1016/j.ijimpeng.2012.10.013
Cesari, 2006, Fracture toughness of alumina-zirconia composites, Ceram. Int., 32, 249, 10.1016/j.ceramint.2005.02.012
Ray, 2003, Hardness/toughness relationship for sic armor, vol. 24, 401
Hazell, 2008, The design of mosaic armour: the influence of tile size on ballistic performance, Mater. Des., 29, 1497, 10.1016/j.matdes.2008.03.003
Lo, 2020, Deformation mechanisms and evolution of mechanical properties in damaged advanced ceramics, J. Eur. Ceram. Soc., 40, 3129, 10.1016/j.jeurceramsoc.2020.02.058
Song, 2015, Proposed “ congruent matching cells ( CMC )” method for ballistic identification and error rate estimation, AFTE J, 47, 177