Ballistic ceramics and analysis of their mechanical properties for armour applications: A review

Ceramics International - Tập 47 - Trang 8743-8761 - 2021
Alexander B. Dresch1, Janio Venturini1,2, Sabrina Arcaro3, Oscar R.K. Montedo3, Carlos P. Bergmann1,2
1Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2Department of Industrial Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
3Universidade do Extremo Sul Catarinense, Criciúma, Brazil

Tài liệu tham khảo

Appleby-Thomas, 2017, On the effects of powder morphology on the post-comminution ballistic strength of ceramics, Int. J. Impact Eng., 100, 46, 10.1016/j.ijimpeng.2016.10.008 Guo, 2016, Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic, Compos. Struct., 157, 163, 10.1016/j.compstruct.2016.08.025 Pittari, 2015, The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics, J. Eur. Ceram. Soc., 35, 4411, 10.1016/j.jeurceramsoc.2015.08.027 Bresciani, 2018, An analytical model for ballistic impacts against ceramic tiles, Ceram. Int., 44, 21249, 10.1016/j.ceramint.2018.08.172 Akella, 2017, Studies for improved damage tolerance of ceramics against ballistic impact using layers, Procedia Eng., 173, 244, 10.1016/j.proeng.2016.12.006 Dancer, 2019, Characterisation of damage mechanisms in oxide ceramics indented at dynamic and quasi-static strain rates, J. Eur. Ceram. Soc., 39, 4936, 10.1016/j.jeurceramsoc.2019.06.054 Rahbek, 2017, Effect of composite covering on ballistic fracture damage development in ceramic plates, Int. J. Impact Eng., 99, 58, 10.1016/j.ijimpeng.2016.09.010 Clayton, 2016, Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics, Def. Technol., 12, 334, 10.1016/j.dt.2016.02.004 Jiusti, 2017, Ballistic performance of Al2O3 mosaic armors with gap-filling materials, Ceram. Int., 43, 2697, 10.1016/j.ceramint.2016.11.087 Appleby-Thomas, 2019, A comparison of the ballistic behaviour of conventionally sintered and additively manufactured alumina, Def. Technol. Chabera, 2015, Comparison of numerical and experimental study of armour system based on alumina and silicon carbide ceramics, Bull. Pol. Acad. Sci. Tech. Sci., 63, 363 da Silva, 2014, Blindagens cerâmicas para aplicações balísticas: uma revisão, Cerâmica, 60, 323, 10.1590/S0366-69132014000300003 Kaufmann, 2003, Influence of material properties on the ballistic performance of ceramics for personal body armour, Shock Vib., 10, 51, 10.1155/2003/357637 Yadav, 2016, Body armour materials: from steel to contemporary biomimetic systems, RSC Adv., 6, 115145, 10.1039/C6RA24016J Medvedovski, 2010, Ballistic performance of armour ceramics: influence of design and structure. Part 1, Ceram. Int., 36, 2103, 10.1016/j.ceramint.2010.05.021 Medvedovski, 2010, Ballistic performance of armour ceramics: influence of design and structure. Part 2, Ceram. Int., 36, 2117, 10.1016/j.ceramint.2010.05.022 Benitez, 2017, Transparent ceramic and glass-ceramic materials for armor applications, Ceram. Int., 43, 13031, 10.1016/j.ceramint.2017.07.205 Huang, 2016, Effect of mechanical properties on the ballistic resistance capability of Al2O3-ZrO2 functionally graded materials, Ceram. Int., 42, 12946, 10.1016/j.ceramint.2016.05.067 Silva, 2014, Alumina-based ceramics for armor application: mechanical characterization and ballistic testing, J. Ceram., 2014, 1, 10.1155/2014/618154 Hu, 2017, Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems, Ceram. Int., 43, 10368, 10.1016/j.ceramint.2017.05.071 Crouch, 2015, Characterisation, significance and detection of manufacturing defects in Reaction Sintered Silicon Carbide armour materials, Ceram. Int., 41, 10.1016/j.ceramint.2015.06.083 Hallam, 2015, The correlation of indentation behaviour with ballistic performance for spark plasma sintered armour ceramics, J. Eur. Ceram. Soc., 35, 2243, 10.1016/j.jeurceramsoc.2014.11.035 Karandikar, 2009, 163 Dresch, 2021, Improving the flexural-strength-to-density ratio in alumina ceramics with the addition of silicon nitride, Ceram. Int., 47, 10.1016/j.ceramint.2020.09.260 Savio, 2019, Microstructure and ballistic performance of hot pressed & reaction bonded boron carbides against an armour piercing projectile, Adv. Appl. Ceram., 118, 264, 10.1080/17436753.2018.1564416 Vargas-Gonzalez, 2010, Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics, Int. J. Appl. Ceram. Technol., 7, 643, 10.1111/j.1744-7402.2010.02501.x Blumer, 2018, The influence of microstructure on the static and dynamic strength of transparent Magnesium Aluminate Spinel (MgAl2O4), J. Eur. Ceram. Soc., 38, 3618, 10.1016/j.jeurceramsoc.2018.03.037 Krell, 2014, Order of influences on the ballistic resistance of armor ceramics and single crystals, Mater. Sci. Eng., A, 597, 422, 10.1016/j.msea.2013.12.101 Haney, 2013, Damage mechanisms perspective on superior ballistic performance of spinel over sapphire, Exp. Mech., 53, 31, 10.1007/s11340-012-9634-0 Lasalvia, 2010, Beyond hardness: ceramics and ceramic-based composites for protection, JOM (J. Occup. Med.), 62, 16 Goel, 2014, Stress wave micro-macro attenuation in ceramic plates made of tiles during ballistic impact, Int. J. Mech. Sci., 83, 30, 10.1016/j.ijmecsci.2014.03.020 Mirkhalaf, 2019, Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications, Int. J. Solid Struct., 158, 52, 10.1016/j.ijsolstr.2018.08.025 Tepeduzu, 2019, Ballistic performance of ceramic/composite structures, Ceram. Int., 45, 1651, 10.1016/j.ceramint.2018.10.042 Rosenberg, 2012 Singh, 2017, Future armour materials and technologies for combat platforms, Defence Sci. J., 67, 412, 10.14429/dsj.67.11468 Gallo, 2019, Transparent glass-ceramics for ballistic protection: materials and challenges, J. Mater. Res. Technol., 8, 3357, 10.1016/j.jmrt.2019.05.006 Bilisik, 2017, Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: a review, Textil. Res. J., 87, 2275, 10.1177/0040517516669075 Hazell Wu, 2020, Ballistic impact performance of SiC ceramic-dyneema fiber composite materials, Ann. Mater. Sci. Eng., 2020 Cavallaro, 2011, Soft body Armor : an Overview of materials , manufacturing , testing , and ballistic impact dynamics naval undersea warfare center division, NUWC-NPT Tech. Rep., 12, 1 Monteiro, 2018, Performance of plain woven jute fabric-reinforced polyester matrix composite in multilayered ballistic system, Polymers, 10, 1, 10.3390/polym10030230 da Luz, 2015, Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric, Mater. Res., 18, 170, 10.1590/1516-1439.358914 Venkatesan, 2017, Ballistic performance of bilayer alumina/aluminium and silicon carbide/aluminium armours, 671 Yu, 2012, Simulation on ballistic performance of ceramic/metal composite armor, Adv. Mater. Res., 581–582, 759 Lóh, 2020, Densified alumina obtained by two-step sintering: impact of the microstructure on mechanical properties, Ceram. Int., 46, 12740, 10.1016/j.ceramint.2020.02.042 Haynes, 2018, Design and processing of alumina plate composites for ballistic nacre alumina structures, MRS Adv, 3, 957, 10.1557/adv.2017.631 Akella, 2015, Composite armour - a review, J. Indian Inst. Sci., 95, 297 Figueiredo, 2018, Response to ballistic impact of alumina-UHMWPE composites, Mater. Res., 21, 10.1590/1980-5373-mr-2017-0959 Medvedovski, 2006, Lightweight ceramic composite armour system, Adv. Appl. Ceram., 105, 241, 10.1179/174367606X113537 Savio, 2014, Ballistic performance of alumina and zirconia-toughened alumina against 7.62 armour piercing projectile, Defence Sci. J., 64, 464, 10.14429/dsj.64.6745 Zhang, 2010, On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target, Mater. Des., 31, 1945, 10.1016/j.matdes.2009.10.046 Nahme, 1994, Determination of the dynamic material properties of shock loaded silicon-nitride, 765 Yeckley, 2012 Yeckley, 2006 McEntire, 2016, Processing and characterization of silicon nitride bioceramics, Bioceram. Dev. Appl., 6, 1, 10.4172/2090-5025.1000093 Liu, 2020, Effect of rare earth oxides addition on the mechanical properties and coloration of silicon nitride ceramics, J. Eur. Ceram. Soc., 40, 1132, 10.1016/j.jeurceramsoc.2019.11.058 Yang, 2019, Microstructure and properties of Si3N4 foam ceramics modified by in-situ self-grown nanowires, Ceram. Int., 45, 16725, 10.1016/j.ceramint.2019.05.046 Zhu, 2008, Textured silicon nitride: processing and anisotropic properties, Sci. Technol. Adv. Mater., 9, 10.1088/1468-6996/9/3/033001 Swab, 2017 Kedir, 2016, Foreign object damage in an oxide/oxide ceramic matrix composite (CMC) under prescribed tensile loading, vol. 6, 1 Huang, 2007, A study on toughening and strengthening of Mg-Al spinel transparent ceramics, Key Eng. Mater., 336–338 II, 1207, 10.4028/www.scientific.net/KEM.336-338.1207 Sigit, 2013, Characteristics of heat treated Al7Si-Mg-Zn - 5 wt.% SiC squeeze casted composite with variation of mg content for tactical vehicle application, Adv. Mater. Res., 789, 198, 10.4028/www.scientific.net/AMR.789.198 Machry, 2021, Manufacturing of fiber-reinforced ceramic matrix composites by filament winding and freeze gelation Kırmızı, 2019, Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites, Compos. B Eng., 164, 345, 10.1016/j.compositesb.2018.11.076 Zhang, 2019, Influence of prestress on ballistic performance of bi-layer ceramic composite armors: experiments and simulations, Compos. Struct., 227, 111258, 10.1016/j.compstruct.2019.111258 Braga, 2018, Effect of the impact geometry in the ballistic trauma absorption of a ceramic multilayered armor system, J. Mater. Res. Technol., 7, 554, 10.1016/j.jmrt.2018.06.019 Tasdemirci, 2012, The effect of the interlayer on the ballistic performance of ceramic/composite armors: experimental and numerical study, Int. J. Impact Eng., 44, 1, 10.1016/j.ijimpeng.2011.12.005 Cui, 2017, Effect of ceramic properties and depth-of-penetration test parameters on the ballistic performance of armour ceramics, Defence Sci. J., 67, 260, 10.14429/dsj.67.10664 Harris, 2017, Ballistic testing of surface-treated alumina and silicon carbide with improved adhesive bond strength, Int. J. Appl. Ceram. Technol., 14, 323, 10.1111/ijac.12668 Eftekhari, 2018, Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3@amorphous alumina nanocomposite core/shell structure, J. Eur. Ceram. Soc., 38, 3297, 10.1016/j.jeurceramsoc.2018.02.038 Neuman, 2017, A high strength alumina-silicon carbide-boron carbide triplex ceramic, Ceram. Int., 43, 7958, 10.1016/j.ceramint.2017.03.104 Lamouri, 2017, Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Boletín La Soc. Española Cerámica y Vidr., 56, 47, 10.1016/j.bsecv.2016.10.001 Milak, 2015, The influence of dopants in the grain size of alumina - a review, Mater. Sci. Forum, 820, 280, 10.4028/www.scientific.net/MSF.820.280 Armor, 2006 2006 Smallman, 1999 Heimann Rashed, 2016, Investigation on high-velocity impact performance of multi-layered alumina ceramic armors with polymeric interlayers, J. Compos. Mater., 50, 3561, 10.1177/0021998315622982 2015 Fabris, 2020, Effect of MgO·Al2O3·SiO2 glass-ceramic as sintering aid on properties of alumina armors, Mater. Sci. Eng., A, 781, 10.1016/j.msea.2020.139237 Rahbek, 2019, Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles, Int. J. Impact Eng., 133, 103332, 10.1016/j.ijimpeng.2019.103332 Jones, 2020, Ballistic evaluation and damage characterization of 3-D printed, alumina-based ceramics for light armor applications, Int. J. Appl. Ceram. Technol., 17, 424, 10.1111/ijac.13428 Kędzierski, 2015, Optimization of two-component armour, Bull. Pol. Acad. Sci. Tech. Sci., 63, 173 Savio, 2018, Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test, Int. J. Impact Eng., 113, 161, 10.1016/j.ijimpeng.2017.11.020 Polla, 2019, Desempenho balístico de estruturas multicamadas à base de alumina/epóxi, Cerâmica, 65, 207, 10.1590/0366-69132019653742457 Monteiro, 2016, How effective is a convex Al2O3-Nb2O5 ceramic armor?, Ceram. Int., 42, 7844, 10.1016/j.ceramint.2015.12.147 Barry Carter, 2007 Durand Noviyanto, 2016, Effect of sintering atmosphere on the grain growth and hardness of SiC/polysilazane ceramic composites, Adv. Appl. Ceram., 115, 272, 10.1080/17436753.2015.1136124 Kim, 2017, Microstructure and high-temperature strength of silicon carbide with 2000 ppm yttria, J. Eur. Ceram. Soc., 37, 4449, 10.1016/j.jeurceramsoc.2017.07.002 Cho, 2017, Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics, J. Eur. Ceram. Soc., 37, 3475, 10.1016/j.jeurceramsoc.2017.04.050 Eom, 2016, Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia, J. Am. Ceram. Soc., 99, 1735, 10.1111/jace.14114 Krishnan, 2010, Numerical simulation of ceramic composite armor subjected to ballistic impact, Compos. B Eng., 41, 583, 10.1016/j.compositesb.2010.10.001 Hayun, 2012, Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS), Ceram. Int., 38, 6335, 10.1016/j.ceramint.2012.05.003 Tamari, 1995, Effect of spark plasma sintering on densification and mechanical properties of silicon carbide, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal Ceram. Soc. Japan., 103, 740, 10.2109/jcersj.103.740 She, 1993, Hot isostatic pressing of α-silicon carbide ceramics, Ceram. Int., 19, 347, 10.1016/0272-8842(93)90048-V Dong, 1996, Hot isostatic pressing and post-hot isostatic pressing of SiC-β-sialon composites, Mater. Lett., 29, 259, 10.1016/S0167-577X(96)00155-3 Ray, 2008, 85 J.W.M., 2002 Sabadin, 2018, Development and validation of a numerical model for the simulation of high-velocity impacts on advanced composite armor systems, Nonlinear Dynam., 91, 1791, 10.1007/s11071-017-3981-4 Delobel, 2020, Effects of density on the mechanical properties of spark plasma sintered β-SiC, Ceram. Int., 10.1016/j.ceramint.2020.02.101 Shen, 2019, Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet, Compos. Struct., 213, 209, 10.1016/j.compstruct.2019.01.078 Flinders, 2005, High-toughness silicon carbide as armor, J. Am. Ceram. Soc., 88, 2217, 10.1111/j.1551-2916.2005.00415.x Luo, 2020, The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile, Mater. Des., 191, 108659, 10.1016/j.matdes.2020.108659 Liu, 2013, Ballistic performance of liquid-phase sintered silicon carbide, Ceram. Int., 39, 8253, 10.1016/j.ceramint.2013.04.010 Suri Zhang, 2001, Crystal structure of new rare-earth boron-rich solids: REB28.5C4, J. Alloys Compd., 329, 168, 10.1016/S0925-8388(01)01581-X Balakrishnarajan, 2007, Structure and bonding in boron carbide: the invincibility of imperfections, New J. Chem., 31, 473, 10.1039/b618493f Greenwood, 1997 Cheng, 2017, Structure and mechanical properties of boron-rich boron carbides, J. Eur. Ceram. Soc., 37, 4514, 10.1016/j.jeurceramsoc.2017.06.017 Sikalidis, 2011 Sonber, 2015, Tribological properties of boron carbide in sliding against WC ball, Int. J. Refract. Metals Hard Mater., 51, 110, 10.1016/j.ijrmhm.2015.03.010 Thévenot, 1990, Boron carbide—a comprehensive review, J. Eur. Ceram. Soc., 6, 205, 10.1016/0955-2219(90)90048-K Sairam, 2014, Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, Int. J. Refract. Metals Hard Mater., 42, 185, 10.1016/j.ijrmhm.2013.09.004 Sonber, 2013, Synthesis, densification and characterization of boron carbide, Trans. Indian Ceram. Soc., 72, 100, 10.1080/0371750X.2013.817755 Hogan, 2017, Fragmentation of an advanced ceramic under ballistic impact: mechanisms and microstructure, Int. J. Impact Eng., 102, 47, 10.1016/j.ijimpeng.2016.12.008 Orphal, 1997, Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s, Int. J. Impact Eng., 19, 1, 10.1016/0734-743X(95)00064-H Victor, 2019, In situ TEM observations of ion irradiation damage in boron carbide, J. Eur. Ceram. Soc., 39, 726, 10.1016/j.jeurceramsoc.2018.11.011 Ojalvo, 2020, Processing of orthotropic and isotropic superhard B4C composites reinforced with reduced graphene oxide, J. Eur. Ceram. Soc., 40, 3406, 10.1016/j.jeurceramsoc.2020.02.027 Yin, 2019, Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering, Ceram. Int., 45, 23781, 10.1016/j.ceramint.2019.08.095 Dutto, 2019, Reaction-bonded B4C/SiC composites synthesized by microwave heating, Int. J. Appl. Ceram. Technol., 16, 1287, 10.1111/ijac.13211 Chen, 2003, Shock-induced localized amorphization in boron carbide, Science, 299, 1563, 10.1126/science.1080819 Holmquist, 1999, 224 Sternberg, 1997, A note on the high velocity penetration of aluminum nitride, Int. J. Impact Eng., 19, 647, 10.1016/S0734-743X(97)00002-X Thevenot, 1991, A review on boron carbide, Key Eng. Mater., 56–57, 59, 10.4028/www.scientific.net/KEM.56-57.59 Schwetz, 1997, Mechanical properties of injection molded B4C-C ceramics, J. Solid State Chem., 133, 68, 10.1006/jssc.1997.7316 Zhou, 2017, Microstructure and mechanical properties of reaction bonded B4C-SiC composites: the effect of polycarbosilane addition, Ceram. Int., 43, 5887, 10.1016/j.ceramint.2017.01.066 Rehman, 2015, Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid, Ceram. Int., 41, 1903, 10.1016/j.ceramint.2014.09.115 Savio, 2011, An experimental study on ballistic performance of boron carbide tiles, Int. J. Impact Eng., 38, 535, 10.1016/j.ijimpeng.2011.01.006 Chao, 2019, The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction, Compos. B Eng., 161, 627, 10.1016/j.compositesb.2018.12.147 Xie, 2016, Microstructural characterization of a commercial hot-pressed boron carbide armor plate, J. Am. Ceram. Soc., 99, 2834, 10.1111/jace.14295 Gao, 2018, Influence of epoxy adhesive layer on impact performance of TiB2-B4C composites armor backed by aluminum plate, Int. J. Impact Eng., 122, 60, 10.1016/j.ijimpeng.2018.07.017 Normandia, 2002, An Overview of ballistic testing methods of ceramic materials, Ceram. Armor Mater. by Des., 113 Popa, 2018, Considerations on dop (depth of penetration) test for evaluation of ceramics materials used in ballistic protection, ACTA Univ. Cibiniensis., 69, 162, 10.1515/aucts-2017-0021 Crouch Rozenberg, 1988, The relation between ballastic efficiency and compressive strength of ceramic tiles, Int. J. Impact Eng., 7, 357, 10.1016/0734-743X(88)90035-8 Dancygier, 2002, Penetration mechanisms of non-deforming projectiles into reinforced concrete barriers, Struct. Eng. Mech., 13, 171, 10.12989/sem.2002.13.2.171 forrestal, 1986, Penetration into dry porous rock, Int. J. Solid Struct., 22, 1485, 10.1016/0020-7683(86)90057-0 Orphal, 1997, Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s, Int. J. Impact Eng., 19, 1, 10.1016/0734-743X(95)00064-H Subramanian, 1995, Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s, Int. J. Impact Eng., 17, 807, 10.1016/0734-743X(95)99901-3 Orphal, 1996, Penetration of confined aluminum nitride targets by tungsten long rods at 1.5–4.5 km/s, Int. J. Impact Eng., 18, 355, 10.1016/0734-743X(95)00045-C Hohler, 1995, Hypervelocity penetration of tungsten sinter-alloy rods into aluminum, Int. J. Impact Eng., 17, 409, 10.1016/0734-743X(95)99866-P Sotskiy, 2011, Experimental and theoretical estimate OF impact conditions effects ON projectiles deceleration history IN target, 1468 Zhai, 2020, Interface defeat studies of long-rod projectile impacting on ceramic targets, Def. Technol., 16, 50, 10.1016/j.dt.2019.05.021 Lundberg, 2016, Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets, Def. Technol., 12, 263, 10.1016/j.dt.2016.02.002 Zhang, 2018, Criterion for interface defeat to penetration transition of long rod projectile impact on ceramic armor, Thin-Walled Struct., 126, 266, 10.1016/j.tws.2017.04.016 Bavdekar, 2019, A unified model for dwell and penetration during long rod impact on thick ceramic targets, Int. J. Impact Eng., 131, 304, 10.1016/j.ijimpeng.2019.05.014 Dehn, 1996, Modeling armor that uses interface defeat, 1139 Anderson, 2005, An analytical model for dwell and interface defeat, Int. J. Impact Eng., 31, 1119, 10.1016/j.ijimpeng.2004.07.013 Aydelotte, 2015, Impact and penetration of SiC: the role of rod strength in the transition from dwell to penetration, Procedia Eng., 103, 19, 10.1016/j.proeng.2015.04.004 Partom, 2012, Modeling interface defeat and dwell in long rod penetration into ceramic targets, 76, 10.1063/1.3686225 Holmquist, 2010, Mechanics of dwell and post-dwell penetration, Adv. Appl. Ceram., 109, 467, 10.1179/174367509X12535211569512 Yuan, 2017, 65 Holland, 2015, Effect of design on the performance of steel-alumina bilayers and trilayers subject to ballistic impact, Mech. Mater., 91, 241, 10.1016/j.mechmat.2015.05.002 Rajagopal, 2014, Oblique ballistic impact behavior of composites, Int. J. Damage Mech., 23, 453, 10.1177/1056789513499268 Hohler, 2001, Comparative analysis of oblique impact on ceramic composite systems, Int. J. Impact Eng., 26, 333, 10.1016/S0734-743X(01)00102-6 Yaziv, 2001, Oblique penetration in ceramic targets, 7 Ben-Dor, 2000, Optimization of two component ceramic armor for a given impact velocity, Theor. Appl. Fract. Mech., 33, 185, 10.1016/S0167-8442(00)00013-6 Savio, 2018, Methodology to measure the protective areal density of ceramic tiles against projectile impact, Defence Sci. J., 68, 76, 10.14429/dsj.68.11136 Huang, 2006, DOP test evaluation of the ballistic performance of armor ceramics against long rod penetration, AIP Conf. Proc., 845 II, 1383, 10.1063/1.2263582 Bolduc, 2016, Ballistic evaluation of nanocomposite ceramic, Passages, 1 Roberson, 2012, Resistance of different ceramic materials to penetration by a tungsten carbide cored projectile, 153 Swab, 2005, vol. 26 Roberson, 2012, Resistance of silicon carbide to penetration by a tungsten carbide cored projectile, 165, 10.1002/9781118406793.ch14 Lach, 1993, Mechanical behaviour of ceramics and their ballistic properties, CFI Ceram. Forum Int., 70, 486 Madhu, 2005, An experimental study of penetration resistance of ceramic armour subjected to projectile impact, Int. J. Impact Eng., 32, 337, 10.1016/j.ijimpeng.2005.03.004 Moynihan Reaugh, 1999, Impact studies of five ceramic materials and pyrex, Int. J. Impact Eng., 23, 771, 10.1016/S0734-743X(99)00121-9 Crouch, 2019, Body armour – new materials, new systems, Def. Technol., 15, 241, 10.1016/j.dt.2019.02.002 Sherman Savio, 2017, Effect of tile thickness and projectile velocity on the ballistic performance of boron carbide against 12.7 mm AP, Procedia Eng., 173, 286, 10.1016/j.proeng.2016.12.015 Hogan, 2015, The effects of microstructure and confinement on the compressive fragmentation of an advanced ceramic, J. Am. Ceram. Soc., 98, 902, 10.1111/jace.13353 Flinders, 2012, 37 Woodward, 1994, A study of fragmentation in the ballistic impact of ceramics, Int. J. Impact Eng., 15, 605, 10.1016/0734-743X(94)90122-2 Grady, 2010, 1 de Assis, 2017, AVALIAÇÃO DA IMPEDÂNCIA DE CHOQUE DA BLINDAGEM MULTICAMADA COM COMPÓSITO DE MATRIZ POLIÉSTER REFORÇA COM TECIDO DE JUTA, 1059 Feng, 2012, Experimental investigation on delayed failure of alumina under shock compression, Adv. Appl. Ceram., 111, 237, 10.1179/1743676112Y.0000000004 Ravid, 2012, 145 Matchen, 1996, Applications of ceramics in armor products, Key Eng. Mater., 124, 333, 10.4028/www.scientific.net/KEM.122-124.333 Association of Test Laboratories for Bullet Resistant Materials and Constructions, 2006, 1 U.S. Department of Justice, 2008 Russian Federation, 2017, 1 Associação Brasileira de Normas Tecnicas, 2005, 1 Ben-Dor, 2005, Ballistic impact: recent advances in analytical modeling of plate penetration dynamics-a review, Appl. Mech. Rev., 58, 355, 10.1115/1.2048626 Popov, 2020, The relative thickness of the barriers and its fundamental importance in armored ballistics, J. Phys. Conf. Ser., 1459, 10.1088/1742-6596/1459/1/012007 Cao, 2020, Experiments and simulations of the ballistic response of ceramic composite armors, J. Mech. Sci. Technol., 34, 2783, 10.1007/s12206-020-0611-8 Larsen, 2011, The effect of body armor on performance, thermal stress, and exertion: a critical review, Mil. Med., 176, 1265, 10.7205/MILMED-D-10-00470 Rice, 1994, Hardness–grain‐size relations in ceramics, J. Am. Ceram. Soc., 77, 2539, 10.1111/j.1151-2916.1994.tb04641.x Li, 2015, On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets, Int. J. Impact Eng., 83, 37, 10.1016/j.ijimpeng.2015.04.003 Zhao, 2016, Directional amorphization of boron carbide subjected to laser shock compression, Proc. Natl. Acad. Sci. U.S.A., 113, 12088, 10.1073/pnas.1604613113 Emin, 1988, Structure and single-phase regime of boron carbides, Phys. Rev. B, 38, 6041, 10.1103/PhysRevB.38.6041 Woolmore, 2012, 175 Domnich, 2002, Phase transformations in silicon under contact loading, Rev. Adv. Mater. Sci., 3, 1 Hazell, 2013, The effect of gilding jacket material on the penetration mechanics of a 7.62 mm armour-piercing projectile, Int. J. Impact Eng., 54, 11, 10.1016/j.ijimpeng.2012.10.013 Cesari, 2006, Fracture toughness of alumina-zirconia composites, Ceram. Int., 32, 249, 10.1016/j.ceramint.2005.02.012 Ray, 2003, Hardness/toughness relationship for sic armor, vol. 24, 401 Hazell, 2008, The design of mosaic armour: the influence of tile size on ballistic performance, Mater. Des., 29, 1497, 10.1016/j.matdes.2008.03.003 Lo, 2020, Deformation mechanisms and evolution of mechanical properties in damaged advanced ceramics, J. Eur. Ceram. Soc., 40, 3129, 10.1016/j.jeurceramsoc.2020.02.058 Song, 2015, Proposed “ congruent matching cells ( CMC )” method for ballistic identification and error rate estimation, AFTE J, 47, 177