Ballistic carbon nanotube field-effect transistors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002)
Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002)
Heinze, S., Radosavljevic, M., Tersoff, J. & Avouris, P. Unexpected scaling of the performance of carbon nanotube transistors. Preprint at 〈 http://xxx.lanl.gov/cond-mat/0302175 〉 (2003).
White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998)
Liang, W. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)
Kong, J. et al. Quantum interference and ballistic transmission in nanotube electron wave-guides. Phys. Rev. Lett. 87, 106801 (2001)
Zhou, C., Kong, J. & Dai, H. Electrical measurements of individual semiconducting single-walled nanotubes of various diameters. Appl. Phys. Lett. 76, 1597 (1999)
Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–915 (2002)
Javey, A. et al. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002)
Guo, J. et al. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. IEE Int. Electron Devices Meeting Tech. Dig. 711–714 (December 2002)
Javey, A., Shim, M. & Dai, H. J. Electrical properties and devices of large-diameter single-walled carbon nanotubes. Appl. Phys. Lett. 80, 1064–1066 (2002)
Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001)
Mandelis, A. & Christofides, C. Physics, Chemistry and Technology of Solid State Gas Sensor Devices (Wiley, New York, 1993)
Leonard, F. & Tersoff, J. Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000)
Zhang, Y., Franklin, N., Chen, R. & Dai, H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interactions. Chem. Phys. Lett. 331, 35–41 (2000)
Zhang, Y. & Dai, H. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett. 77, 3015–3017 (2000)
Kane, C. L. et al. Temperature dependent resistivity of single wall carbon nanotubes. Euro. Phys. Lett. 6, 683–688 (1998)
Fischer, J. E. et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B 55, R4921–R4924 (1997)
Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)
Wind, S. J., Appenzeller, J., Martel, R., Derycke, V. & Avouris, P. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80, 3817–3819 (2002)
Guo, J. & Lundstrom, M. A Computational study of thin-body, double-gate, Schottky barrier MOSFETs. IEEE Trans. Elec. Dev. 49, 1897–1902 (2002)
Guo, J., Lundstrom, M. & Datta, S. Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett. 80, 3192–3194 (2002)
Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981)
Rahman, A., Guo, J., Datta, S. & Lundstrom, M. Theory of ballistic nanotransistors. IEEE Trans. Electron Dev. and IEEE Trans. Nanotechnol. (Joint Special Issue on Nanoelectronics) (in the press).
Kong, J., Soh, H., Cassell, A., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998)
Soh, H. et al. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627–629 (1999)
Odintsov, A. A. Schottky barriers in carbon nanotube heterojunctions. Phys. Rev. Lett. 85, 150–153 (2000)
Leonard, F. & Tersoff, J. Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999)
Nakanishi, T., Bachtold, A. & Dekker, C. Transport through the interface between a semiconducting carbon nanotube and a metal electrode. Phys. Rev. B 66, 073307 (2002)