Ball-disk rotor gyroscope adaptive quick-start technique
Tóm tắt
Rotating speed is a critical parameter affecting the performance of rotor gyroscopes. Rotor gyroscopes must operate at the rated rotating speed. To shorten the start time of the ball-disk rotor gyroscope, this paper presents a new design of the drive system for a ball-disk rotor gyroscope. The drive system is monitored by a microcontroller. First, the microcontroller generates a sine pulse width modulation signal to drive the permanent magnet rotor. Second, the position of the rotor is detected according to the back electromotive force in the non-energized coil. Third, a piecewise closed-loop control algorithm is implemented to keep the angular acceleration of the rotor within the safe range automatically during the acceleration process and when running at a constant speed. This control algorithm can avoid rotor stalling due to loss of steps. Experimental result shows that with the help of adaptive quick-start technique, the start time of the device can be shortened by up to 36.6%.
Tài liệu tham khảo
Barbour, N., Schmidt, G., 2001. Inertial sensor technology trends. IEEE. Sens. J., 1(2):332–339. https://doi.org/10.1109/7361.983473
Damrongsak, B., Kraft, M., 2005. A micromachined electrostatically suspended gyroscope with digital force feedback. IEEE Sensors, p.401–404. https://doi.org/10.1109/ICSENS.2005.1597720
Damrongsak, B., Kraft, M., Rajgopal, S., et al., 2008. Design and fabrication of a micromachined electrostatically suspended gyroscope. J. Mech. Eng., 222(1):53–63. https://doi.org/10.1243/09544062JMES665
Dauwalter, C.R., Ha, J.C., 2005. Magnetically suspended MEMS spinning wheel gyro. IEEE Aerosp. Electron. Syst. Mag., 20(2):21–26. https://doi.org/10.1109/MAES.2005.1397145
Deng, S., Li, X.L., Wang, J.G., et al., 2011. Frictional torque characteristic of angular contact ball bearings. J. Mech. Eng., 47(5):114–120. https://doi.org/10.3901/JME.2011.05.114
Geen, J.A., 2005. Very low cost gyroscopes. IEEE Sensors, p.537–540. https://doi.org/10.1109/ICSENS.2005.1597754
Han, F.T., Liu, Y.F., Wang, L., et al., 2012. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor. J. Micromech. Microeng., 22(10):1–9. https://doi.org/10.1088/0960-1317/22/10/105032
Jin, L.C., Zhang, H.W., Zhong, Z.Y., 2011. Design of a LC-tuned magnetically suspended rotating gyroscope. J. Appl. Phys., 109:07E525. https://doi.org/10.1063/1.3562263
Kraft, M., Damrongsak, B., 2010. Micromachined gyroscopes based on a rotating mechanically unconstrained proof mass. IEEE Sensors, p.23–28. https://doi.org/10.1109/ICSENS.2010.5690984
Qin, K., Zhang, W.P., Chen, W.Y., et al., 2011. Simulation of electrostatically suspended micro-gyroscope based on LabVIEW. 3rd Int. Conf. on Measuring Technology and Mechatronics Automation, p.249–252. https://doi.org/10.1109/ICMTMA.2011.633
Shao, D.D., Chen, W.Y., Zhang, W.P., et al., 2011. Virtual prototyping simulation for electrostatically suspended rotor micro gyroscope initial levitation. 6th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, p.9–12. https://doi.org/10.1109/NEMS.2011. 6017282
Shao, S.Y., Huang, X.G., Liu, W., et al., 2006. Design of drive circuit for rotation of micromachined gyroscope with magnetic-suspension rotor. Transd. Microsyst. Technol., 2:83–85 (in Chinese).
Shearwood, C., Yates, R.B., 1997. Development of an electromagnetic micro-generator. Electron. Lett., 33(22):1883–1884. https://doi.org/10.1049/el:19971262
Shearwood, C., Ho, K.Y., Williams, C.B., et al., 2000. Development of a levitated micromotor for application as a gyroscope. Sensor Actuat. A, 83(1–3):85–92. https://doi.org/10.1016/S0924-4247(00)00292-2
Srinu, D., Manmadha, K.B., 2014. A single phase to three phase PFC half-bridge converter using BLDC drive with SPWM technique. Int. J. Eng. Res. Appl., 4(7):31–38.
Wang, C.C., Yao, Y.D., Liu, C.S., et al., 2006. Micro-magnetic suspension motor design for miniature optical drive. Jpn. J. Appl. Phys., 45(7):5801–5803. https://doi.org/10.1364/ISOM_ODS.2005.MP1
Wu, X.S., Chen, W.Y., Zhao, X.L., et al., 2006a. Development of a micromachined rotating gyroscope with electromagnetically levitated rotor. J. Micromech. Microeng., 16(10):1993–1999. https://doi.org/10.1088/0960-1317/16/10/011
Wu, X.S., Chen, W.Y., Zhao, X.L., et al., 2006b. Micromachined rotating gyroscope with electromagnetically levitated rotor. Electron. Lett., 42(16):912–913. https://doi.org/10. 1049/el:20061479
Xiao, Q.J., Chen, W.Y., Li, S.Y., et al., 2010. Modeling and simulation of levitation control for a micromachined electrostatically suspended gyroscope. Microsyst. Technol., 16:357–366. https://doi.org/10.1007/s00542-009-0927-x
Xu, J.B., Wu, Z.Z., Wu, X., et al., 2014. An improved phase disposition SPWM strategy for cascaded multilevel inverter. Math. Probl. Eng., Article 731574. https://doi.org/10.1155/2014/731574
Xue, G., Li, T., Zhang, H.W., 2009a. Research status and development of magnetically suspended rotorgyroscopes. Int. Conf. on Applied Superconductivity and Electromagnetic Devices, p.373–376. https://doi.org/10.1109/ASEMD.2009.5306617
Xue, G., Zhang, X.T., Zhang, H.W., 2009b. Electromagnetic design of a magnetically suspended gyroscope prototype. IEEE Int. Conf. on Applied Superconductivity and Electromagnetic Devices, p.369–372. https://doi.org/10.1109/ASEMD.2009.5306616