Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cân bằng Môi trường: Các Mô hình Tính toán như Những Tham Gia Tương Tác trong Lớp Học STEM
Tóm tắt
Bài báo này mô tả công việc của học sinh lớp sáu nhằm đạt được và duy trì các dòng nghiên cứu năng suất và có ý nghĩa cá nhân với các mô hình tính toán. Khả năng định hình các tương tác với công cụ như những cuộc trao đổi đối thoại với các đồng tham gia là một thực tiễn hữu ích cho sự tham gia học thuật trong khoa học và tư duy tính toán (Chandrasekharan và Nersessian 2015; Dennet 1989; Latour 1993; Pickering 1995). Chúng tôi đề xuất rằng các mô hình tính toán có những lợi thế độc đáo cho tương tác đối thoại vì chúng có tính xác suất và có thể thực hiện lặp lại, những đặc điểm này cung cấp điểm khởi đầu cho học sinh để nhận thức mô hình tính toán như những tham gia. Phân tích của chúng tôi tiết lộ rằng các mẫu tương tác xã hội hiện có của học sinh là nguồn lực để tương tác linh hoạt với các công cụ tính toán như những người tham gia. Cụ thể, chúng tôi nhận thấy rằng học sinh đã coi các mô hình tính toán như những người tham gia theo ba cách: (1) như những bạn đồng đàm thoại, (2) như những nhà đồng xây dựng các dòng nghiên cứu, và (3) như những biểu hiện của quyền tự quyết và danh tính của học sinh. Dữ liệu của chúng tôi cũng cho thấy rằng học sinh thực hiện những cách nhìn linh hoạt, thay vì cố định, đối với các đối tượng tính toán. Những cách nhìn này song song với sự tương tác của các nhà khoa học với các thực thể không phải người, thường liên quan đến việc xem công cụ như những tham gia chủ động trong nghiên cứu (Latour 1999; Pickering 1995), tạo ra một con đường cho học sinh đến với các thực tiễn giao thoa giữa sự tham gia học thuật và tư duy tính toán.
Từ khóa
#mô hình tính toán #tương tác đối thoại #nghiên cứu năng suất #tư duy tính toán #học sinh lớp sáu #lớp học STEMTài liệu tham khảo
Ackermann, E. (2012). Perspective-taking and object construction: Two keys to learning. In Constructionism in practice (pp. 39–50). Routledge.
Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2015). Epistemologies in practice: making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(2), 1082–1112.
Brady, C., Holbert, N., Soylu, F., Novak, M., & Wilensky, U. (2015). Sandboxes for model-based inquiry. Journal of Science Education and Technology, 24(2), 265–286.
Burke, Q., O’Byrne, W. I., & Kafai, Y. B. (2016). Computational participation. Journal of Adolescent & Adult Literacy, 59(4), 371–375.
Chandrasekharan, S., & Nersessian, N. J. (2015). Building cognition: the construction of computational representations for scientific discovery. Cognitive Science, 39, 1727–1763.
Chandrasekharan, S., & Nersessian, N. J. (2017). Rethinking correspondence: how the process of constructing models leads to discoveries and transfer in the bioengineering sciences. Synthese, 48(6), 1–30.
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.
Dennett, D. C. (1989). The intentional stance. Cambridge: MIT press.
Dickes, A. C., & Sengupta, P. (2013). Learning natural selection in 4th grade with multi-agent-based computational models. Research in Science Education, 43(3), 921–953.
Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The evolution of research on computer-supported collaborative learning. In N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, & S. Barnes (Eds.), Technology-enhanced learning. Dordrecht: Springer.
diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: meta-representational expertise in children. The Journal of Mathematical Behavior, 10(2), 117–160.
Ellis, N., & Larsen-Freeman, D. (Eds.). (2009). Language as a complex adaptive system. Oxford: Wiley.
Epstein, J., & Axtell, R. (1996). Growing artifical societies: social science from the bottom up. Washington: Brookings Institution Press.
Farris, A. V., & Sengupta, P. (2014). Perspectival computational thinking for learning physics: a case study of collaborative agent-based modeling. Proceedings of the 12th International Conference of the Learning Sciences. (ICLS 2014), pp 1102 - 1107.
Fox Keller, E. (1983). A feeling for the organism, 10th anniversary edition: the life and work of Barbara McClintock. New York: Henry Holt and Company, LLC..
Fox Keller, E. (2003). Models, simulation, and computer experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 198–215). Pittsburgh: University of Pittsburgh Press.
Gee, J. P. (2014). An introduction to discourse analysis: theory and method (4th ed.). New York: Routledge.
Goffman, E. (1981). Footing. In E. Goffman (Ed.), Forms of talk (pp. 124–159). University of Pennsylvania Press.
Goodwin, C. (2007). Interactive footing. In E. Holt & R. Clift (Eds.), Reporting talk: Reported speech in interaction (pp. 16–64). Cambridge.
Goodwin, C. (2017). Co-operative action (learning in doing: social, cognitive, and computational perspectives). Cambridge: Cambridge University Press.
Guo, Y., Wagh, A., Brady, C., Levy, S. T., Horn, M. S., & Wilensky, U. (2016). Frogs to think with: Improving Students' computational thinking and understanding of evolution in a code-first learning environment. Proceedings of the 15th International Conference of ACM SIGCHI Interaction Design and Children (IDC 2016). (pp. 246–254).
Horn, M., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014). Frog pond: A code-first learning environment on evolution and natural selection. In Proceedings of Interaction Design and Children (IDC'14).
Kafai, Y. B., & Burke, Q. (2013). The social turn in K-12 programming: moving from computational thinking to computational participation. In Proceeding of the 44thACM technical symposium on computer science education (pp. 603-608). ACM.
Kearney, M. (2004). Classroom use of multimedia-supported predict–observe–explain tasks in a social constructivist learning environment. Research in Science Education, 34(4), 427–453.
Klopfer, E. (2003). Technologies to support the creation of complex systems models--using StarLogo software with students. Biosystems, 71(1-2), 111–122.
Latour, B. (1993). Pasteur on lactic acid yeast: a partial semiotic analysis. In Configurations, 1.1 (pp. 129–146). Baltimore: Johns Hopkins University Press.
Latour, B. (1999). Pandora’s hope: essays on the reality of science studies. Cambridge: Harvard University Press.
Latour, B. (2005). Reassembling the social: an introduction to actor-network-theory. Oxford: Oxford University Press.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickso, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.
Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: the Betty’s Brain system. International Journal of Artificial Intelligence in Education, 18(3), 181–208.
Moreno-Armella, L., & Brady, C. (2018). Technological Supports for Mathematical Thinking and Learning: Co-action and Designing to Democratize Access to Powerful Ideas. In Uses of Technology in Primary and Secondary Mathematics Education (pp. 339–350). Springer, Cham.
National Science Foundation [NSF]. (2019). Future of work at the human-technology frontier. Retrieved February 22, 2019, from https://www.nsf.gov/eng/futureofwork.jsp.
Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119–172.
Next Generation Science Standards Lead States. (2013). Next generation science standards: for states, by states. Washington, DC: National Academies Press.
Norris, S., & Jones, R. (2005). Discourse in action: Introducing mediated discourse analysis. New York: Routledge.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Pickering, A. (1995). The mangle of practice: time, agency and science. In American Journal of Sociology. Chicago: University of Chicago Press.
Pierson, A. E., Clark, D. B., & Sherard, M. K. (2017). Learning progressions in context: Tensions and insights from a semester‐long middle school modeling curriculum. Science Education, 101(6), 1061–1088.
Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: review and development recommendations. Simulation, 82(9), 609–523.
Resnick, M. (1994). Turtles, termites and traffic jams: explorations in massively parallel microworlds. Cambridge: MIT Press.
Rienties, B., Giesbers, B., Tempelaar, D., Lygo-Baker, S., Segers, M., & Gijselaers, W. (2012). The role of scaffolding and motivation in CSCL. Computers & Education, 59(3), 893–906.
Salk, J. (1983). Anatomy of reality: merging of intuition and reason. New York: Columbia University Press.
Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, D., & Wright, M. (2015). Programming in K-12 science classrooms. Communications of the ACM, 58(11), 33–35.
Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in STEM education. In Computational Thinking in the STEM Disciplines (pp. 49–72). Cham: Springer.
Sengupta, P., Dickes, A., & Farris, A.V. (2020). Voicing code in STEM: A dialogical imagination. MIT Press. Cambridge, MA (forthcoming)
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351–380.
Sengupta, P., & Wilensky, U. (2009). Learning electricity with NIELS: thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning, 14(1), 21–50.
Valdés, G. (2015). Latin@s and the intergenerational continuity of Spanish: the challenges of curricularizing language. International Multilingual Research Journal, 9(4), 253–273.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: learning biology through constructing and testing computational theories—an embodied modeling approach. Cognition and Instruction, 24(2), 171–209.
Wilensky, U., & Resnick, M. (1999). Thinking in levels: a dynamic systems perspective to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19.
Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring shifts in middle school learners’ modeling activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education and Technology, 24, 396–415.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
Yoon, S., Klopfer, E., Anderson, E., Koehler-Yom, J., Sheldon, J., Schoenfeld, I., Wendel, D., Scheintaub, H., Oztok, M., Evans, C., & Goh, S. (2016). Designing computer-supported complex systems curricula for the Next Generation Science Standards in high school science classrooms. Systems, 4(38), 1–18.
Yoon, S., Anderson, E., Koehler-Yom, Evans, C., Park, M., Sheldon, J., Schoenfeld, I., Wendel, D., Scheintaub, H., & Klopfer, E. (2017). Teaching about complex systems is not simple matter: building effective professional development for computer-supported complex systems instruction. Instructional Science, 45(1), 99–121.