Balancing the Environment: Computational Models as Interactive Participants in a STEM Classroom
Tóm tắt
This paper describes the work done by sixth grade students to achieve and sustain productive and personally meaningful lines of inquiry with computational models. The capacity to frame interactions with tools as dialogic exchanges with co-participants is a productive practice for disciplinary engagement in science and for computational thinking (Chandrasekharan and Nersessian 2015; Dennet 1989; Latour 1993; Pickering 1995). We propose that computational models have unique affordances for dialogic interaction because they are probabilistic and iteratively executable, features that provide an entry point for students to adopt stances that treat computational models as participants. Our analysis reveals that existing patterns in students’ social interactions are resources for interacting flexibly with computational tools as participants. In particular, we found that students treated computational models as participants in three ways: (1) as conversational peers, (2) as co-constructors of lines of inquiry, and (3) as projections of students’ agency and identity. Our data also demonstrate that students take on flexible, rather than fixed, stances toward computational participants. These stances parallel scientists’ interactions with non-human entities, which often involve treating tools as agentive participants in inquiry (Latour 1999; Pickering 1995), affording students a pathway to practices at the intersection of disciplinary engagement and computational thinking.
Tài liệu tham khảo
Ackermann, E. (2012). Perspective-taking and object construction: Two keys to learning. In Constructionism in practice (pp. 39–50). Routledge.
Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2015). Epistemologies in practice: making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(2), 1082–1112.
Brady, C., Holbert, N., Soylu, F., Novak, M., & Wilensky, U. (2015). Sandboxes for model-based inquiry. Journal of Science Education and Technology, 24(2), 265–286.
Burke, Q., O’Byrne, W. I., & Kafai, Y. B. (2016). Computational participation. Journal of Adolescent & Adult Literacy, 59(4), 371–375.
Chandrasekharan, S., & Nersessian, N. J. (2015). Building cognition: the construction of computational representations for scientific discovery. Cognitive Science, 39, 1727–1763.
Chandrasekharan, S., & Nersessian, N. J. (2017). Rethinking correspondence: how the process of constructing models leads to discoveries and transfer in the bioengineering sciences. Synthese, 48(6), 1–30.
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.
Dennett, D. C. (1989). The intentional stance. Cambridge: MIT press.
Dickes, A. C., & Sengupta, P. (2013). Learning natural selection in 4th grade with multi-agent-based computational models. Research in Science Education, 43(3), 921–953.
Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The evolution of research on computer-supported collaborative learning. In N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, & S. Barnes (Eds.), Technology-enhanced learning. Dordrecht: Springer.
diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: meta-representational expertise in children. The Journal of Mathematical Behavior, 10(2), 117–160.
Ellis, N., & Larsen-Freeman, D. (Eds.). (2009). Language as a complex adaptive system. Oxford: Wiley.
Epstein, J., & Axtell, R. (1996). Growing artifical societies: social science from the bottom up. Washington: Brookings Institution Press.
Farris, A. V., & Sengupta, P. (2014). Perspectival computational thinking for learning physics: a case study of collaborative agent-based modeling. Proceedings of the 12th International Conference of the Learning Sciences. (ICLS 2014), pp 1102 - 1107.
Fox Keller, E. (1983). A feeling for the organism, 10th anniversary edition: the life and work of Barbara McClintock. New York: Henry Holt and Company, LLC..
Fox Keller, E. (2003). Models, simulation, and computer experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 198–215). Pittsburgh: University of Pittsburgh Press.
Gee, J. P. (2014). An introduction to discourse analysis: theory and method (4th ed.). New York: Routledge.
Goffman, E. (1981). Footing. In E. Goffman (Ed.), Forms of talk (pp. 124–159). University of Pennsylvania Press.
Goodwin, C. (2007). Interactive footing. In E. Holt & R. Clift (Eds.), Reporting talk: Reported speech in interaction (pp. 16–64). Cambridge.
Goodwin, C. (2017). Co-operative action (learning in doing: social, cognitive, and computational perspectives). Cambridge: Cambridge University Press.
Guo, Y., Wagh, A., Brady, C., Levy, S. T., Horn, M. S., & Wilensky, U. (2016). Frogs to think with: Improving Students' computational thinking and understanding of evolution in a code-first learning environment. Proceedings of the 15th International Conference of ACM SIGCHI Interaction Design and Children (IDC 2016). (pp. 246–254).
Horn, M., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014). Frog pond: A code-first learning environment on evolution and natural selection. In Proceedings of Interaction Design and Children (IDC'14).
Kafai, Y. B., & Burke, Q. (2013). The social turn in K-12 programming: moving from computational thinking to computational participation. In Proceeding of the 44thACM technical symposium on computer science education (pp. 603-608). ACM.
Kearney, M. (2004). Classroom use of multimedia-supported predict–observe–explain tasks in a social constructivist learning environment. Research in Science Education, 34(4), 427–453.
Klopfer, E. (2003). Technologies to support the creation of complex systems models--using StarLogo software with students. Biosystems, 71(1-2), 111–122.
Latour, B. (1993). Pasteur on lactic acid yeast: a partial semiotic analysis. In Configurations, 1.1 (pp. 129–146). Baltimore: Johns Hopkins University Press.
Latour, B. (1999). Pandora’s hope: essays on the reality of science studies. Cambridge: Harvard University Press.
Latour, B. (2005). Reassembling the social: an introduction to actor-network-theory. Oxford: Oxford University Press.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickso, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.
Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: the Betty’s Brain system. International Journal of Artificial Intelligence in Education, 18(3), 181–208.
Moreno-Armella, L., & Brady, C. (2018). Technological Supports for Mathematical Thinking and Learning: Co-action and Designing to Democratize Access to Powerful Ideas. In Uses of Technology in Primary and Secondary Mathematics Education (pp. 339–350). Springer, Cham.
National Science Foundation [NSF]. (2019). Future of work at the human-technology frontier. Retrieved February 22, 2019, from https://www.nsf.gov/eng/futureofwork.jsp.
Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing. Cognition and Instruction, 16(2), 119–172.
Next Generation Science Standards Lead States. (2013). Next generation science standards: for states, by states. Washington, DC: National Academies Press.
Norris, S., & Jones, R. (2005). Discourse in action: Introducing mediated discourse analysis. New York: Routledge.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Pickering, A. (1995). The mangle of practice: time, agency and science. In American Journal of Sociology. Chicago: University of Chicago Press.
Pierson, A. E., Clark, D. B., & Sherard, M. K. (2017). Learning progressions in context: Tensions and insights from a semester‐long middle school modeling curriculum. Science Education, 101(6), 1061–1088.
Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: review and development recommendations. Simulation, 82(9), 609–523.
Resnick, M. (1994). Turtles, termites and traffic jams: explorations in massively parallel microworlds. Cambridge: MIT Press.
Rienties, B., Giesbers, B., Tempelaar, D., Lygo-Baker, S., Segers, M., & Gijselaers, W. (2012). The role of scaffolding and motivation in CSCL. Computers & Education, 59(3), 893–906.
Salk, J. (1983). Anatomy of reality: merging of intuition and reason. New York: Columbia University Press.
Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, D., & Wright, M. (2015). Programming in K-12 science classrooms. Communications of the ACM, 58(11), 33–35.
Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in STEM education. In Computational Thinking in the STEM Disciplines (pp. 49–72). Cham: Springer.
Sengupta, P., Dickes, A., & Farris, A.V. (2020). Voicing code in STEM: A dialogical imagination. MIT Press. Cambridge, MA (forthcoming)
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351–380.
Sengupta, P., & Wilensky, U. (2009). Learning electricity with NIELS: thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning, 14(1), 21–50.
Valdés, G. (2015). Latin@s and the intergenerational continuity of Spanish: the challenges of curricularizing language. International Multilingual Research Journal, 9(4), 253–273.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: learning biology through constructing and testing computational theories—an embodied modeling approach. Cognition and Instruction, 24(2), 171–209.
Wilensky, U., & Resnick, M. (1999). Thinking in levels: a dynamic systems perspective to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19.
Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring shifts in middle school learners’ modeling activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education and Technology, 24, 396–415.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
Yoon, S., Klopfer, E., Anderson, E., Koehler-Yom, J., Sheldon, J., Schoenfeld, I., Wendel, D., Scheintaub, H., Oztok, M., Evans, C., & Goh, S. (2016). Designing computer-supported complex systems curricula for the Next Generation Science Standards in high school science classrooms. Systems, 4(38), 1–18.
Yoon, S., Anderson, E., Koehler-Yom, Evans, C., Park, M., Sheldon, J., Schoenfeld, I., Wendel, D., Scheintaub, H., & Klopfer, E. (2017). Teaching about complex systems is not simple matter: building effective professional development for computer-supported complex systems instruction. Instructional Science, 45(1), 99–121.