Balanced random interval arithmetic

Computers and Chemical Engineering - Tập 28 - Trang 839-851 - 2004
Julius Zilinskas1, Ian David Lockhart Bogle2
1Faculty of Informatics, Kaunas University of Technology, Studentu 50-214b, LT-3031 Kaunas, Lithuania
2Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

Tài liệu tham khảo

Alt, 2001, Experiments on the evaluation of functional ranges using random interval arithmetic, Mathematics and Computers in Simulation, 56, 17, 10.1016/S0378-4754(00)00277-9 Byrne, 1999, Global optimization of constrained non-convex programs using reformulation and interval analysis, Computers and Chemical Engineering, 23, 1341, 10.1016/S0098-1354(99)00295-1 Byrne, 2000, Global optimization of modular process flowsheets, Industrial, Industrial and Engineering Chemistry Research, 39, 4296, 10.1021/ie990619d Floudas, 1999, Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions, Computers and Chemical Engineering, 23, S963, 10.1016/S0098-1354(99)80231-2 Floudas, C. A. (2000). Deterministic global optimization. Theory, methods and applications. Dordrecht: KAP. Gau, 2002, New interval methodologies for reliable chemical process modeling, Computers and Chemical Engineering, 26, 827, 10.1016/S0098-1354(02)00005-4 Green, P., Carmone, F., & Smith, S. (1989). Multidimensional scaling: Concepts and applications. Boston: Allyn and Bacon. Hansen, E. (1992). Global optimization using interval analysis. New York: Marcel Dekker. Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis. Berlin: Springer-Verlag. Johnson, N. L., & Kotz, S. (1995). Continuous univariate distributions (2nd ed.). New York: Wiley. Mathar, R., (1996). A hybrid global optimization algorithm for multidimensional scaling. Classification and knowledge optimization. In Proceedings of the 20th Annual Conference of the Gesellschaft für Klassification e.V. (pp. 63–71). University of Freiburg. Moore, R. E. (1966). Interval analysis. Englewood Cliffs, NJ: Prentice-Hall. Neumaier, A., 1990. Interval methods for systems of equations. Cambridge: Cambridge University Press. Torn, 1989, Global optimization, Lecture Notes in Computer Science, 350, 1 Parmee, I. C. (2001). Evolutionary and adaptive computing in engineering design. Berlin: Springer-Veralg. Xu, 2002, Reliable computation of phase stability and equilibrium from the SAFT equation of state, Industrial and Engineering Chemistry Research, 41, 938, 10.1021/ie0101801 Zilinskas, J., & Bogle, I. D. L. (2003). Evaluation ranges of functions using balanced random interval arithmetic. Informatica, 14(3), 403–416.