Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples
Tóm tắt
The propensity score is a subject's probability of treatment, conditional on observed baseline covariates. Conditional on the true propensity score, treated and untreated subjects have similar distributions of observed baseline covariates. Propensity‐score matching is a popular method of using the propensity score in the medical literature. Using this approach, matched sets of treated and untreated subjects with similar values of the propensity score are formed. Inferences about treatment effect made using propensity‐score matching are valid only if, in the matched sample, treated and untreated subjects have similar distributions of measured baseline covariates. In this paper we discuss the following methods for assessing whether the propensity score model has been correctly specified: comparing means and prevalences of baseline characteristics using standardized differences; ratios comparing the variance of continuous covariates between treated and untreated subjects; comparison of higher order moments and interactions; five‐number summaries; and graphical methods such as quantile–quantile plots, side‐by‐side boxplots, and non‐parametric density plots for comparing the distribution of baseline covariates between treatment groups. We describe methods to determine the sampling distribution of the standardized difference when the true standardized difference is equal to zero, thereby allowing one to determine the range of standardized differences that are plausible with the propensity score model having been correctly specified. We highlight the limitations of some previously used methods for assessing the adequacy of the specification of the propensity‐score model. In particular, methods based on comparing the distribution of the estimated propensity score between treated and untreated subjects are uninformative. Copyright © 2009 John Wiley & Sons, Ltd.
Từ khóa
Tài liệu tham khảo
Tu JV, 2004, Quality of Cardiac Care in Ontario
Moher D, 2001, The CONSORT statement: revised recommendations for improving the quality of reports of parallel‐group randomized trials, Journal of the American Medical Association, 285, 1787
Cohen J, 1988, Statistical Power Analysis for the Behavioral Sciences
Hedges LV, 1985, Statistical Methods for Meta‐Analysis
Rosner B, 1995, Fundamentals of Biostatistics
Hoaglin DC, 1983, Understanding Robust and Exploratory Data Analysis
Casella G, 1990, Statistical Inference
Sackett DL, 1996, Down with odds ratios! for publication, Evidence‐Based Medicine, 1, 164
Jaeschke R, 1995, Basis statistics for clinicians 3: assessing the effects of treatment: measures of association, Canadian Medical Association Journal, 152, 351