Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định lý Baer-Suzuki cho π-radical
Tóm tắt
Trong bài viết này, chúng tôi chứng minh (theo phân loại các nhóm đơn giản hữu hạn) một tương tự của định lý Baer-Suzuki nổi tiếng cho π-radical của một nhóm hữu hạn, trong đó π là tập hợp các số nguyên tố.
Từ khóa
#Định lý Baer-Suzuki #π-radical #nhóm hữu hạn #phân loại nhóm đơn giảnTài liệu tham khảo
J. Alperin and R. Lyons, On conjugacy classes of p-elements, Journal of Algebra 19 (1971), 536–537.
M. Aschbacher, Finite Group Theory, Cambridge Studies in Advanced Mathematics, Vol. 10, Cambridge University Press, Cambridge, 1986.
M. Aschbacher, R. Lyons, S. D. Smith and R. Solomon, The Classification of Finite Simple Groups. Groups of Characteristic 2 Type, Mathematical Surveys and Monographs, Vol. 172, American Mathematical Society, Providence, RI, 2011.
M. Aschbacher and G. M. Seitz, Involution in Chevalley groups over fields of even order, Nagoya Mathematical Journal 63 (1976), 1–91.
R. Baer, Engelsche Elemente Noetherscher Gruppen, Mathematische Annalen 133 (1957), 256–270.
J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 407, Cambridge University Press, Cambridge, 2013.
R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley and Sons, London-New York-Sydney, 1972.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
L. Di Martino, M. A. Pellegrini and A. E. Zalesski, On generators and representations of the sporadic simple groups, Communications in Algebra 42 (2014), 880–908.
J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Vol. 163, Springer, New York, 1996
P. Flavell, S. Guest and R. Guralnick, Characterizations of the solvable radical, Proceedings of the American Mathematical Society 138 (2010), 1161–1170.
N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, Journal of Pure and Applied Algebra 213 (2009), 250–258.
N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin, Baer-Suzuki theorem for the solvable radical of a finite group, Comptes Rendus Mathématique. Acédemie des Sciences. Paris 347 (2009), 217–222.
N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin, From Thompson to Baer-Suzuki: a sharp characterization of the solvable radical, Journal of Algebra 323 (2010), 2888–2904.
D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups. Number 3, Mathematical Surveys and Monographs, Vol. 40.3, American Mathematical Society, Providence, RI, 1998.
S. Guest, A solvable version of the Baer-Suzuki Theorem, Transactions of the American Mathmeatical Society 362 (2010), 5909–5946.
S. Guest and D. Levy, Criteria for solvable radical membership via p-elements, Journal of Algebra 415 (2014), 88–111.
R. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, Journal of Algebra 268 (2003), 519–571.
P. B. Kleidman and M. Liebeck, The Subgroups Structure of Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, Cambridge, 1990.
M. W. Liebeck and J. Saxl, Minimal degrees of primitive permutation group, with an application to monodromy groups of covers of Riemann surfaces, Proceedings of the London Mathematical Society 63 (1991), 266–314.
A. S. Mamontov, An analog of the Baer-Suzuki theorem for infinite groups, Siberian Mathematical Journal 45 (2004), 327–330.
V. D. Mazurov, A. Yu. Ol’shanskii and A. I. Sozutov, Infinite groups of finite period, Algebra and Logic 54 (2015), 161–166.
E. M. Pal’chik, O porozhleniyah parami sopryazhennyh elementov v konechnyh gruppah, Doklady Natsional’noĭ Akademii Nauk Belarusi 55 (2011), 19–20.
D. O. Revin, On Baer-Suzuki π-theorems, Siberian Mathematical Journal 52 (2011), 340–347.
D. O. Revin, On a relation between the Sylow and Baer-Suzuki theorems, Siberian Mathematical Journal 52 (2011), 904–913.
A. I. Sozutov, On a generalization of the Baer-Suzuki theorem, Siberian Mathematical Journal 45 (2000), 561–562.
M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Annals of Mathematics 82 (1968), 191–212.
M. Suzuki, Group Theory. I, Grundlehren der Mathematischen Wissenschaften, Vol. 247, Springer, Berlin-New York, 1982.
V. N. Tyutyanov, On the existence of solvable normal subgroups in finite groups, Mathematical Notes 61 (1997) 632–634.
V. N. Tyutyanov, Kriteriy neprostoty konechnoy gruppy, Izvestiya Gomel’skogo Gosudarstvennogo Universiteta imeni F. Skoriny (Voprosy algebry) 3 (2000), 125–137.
R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, Vol. 251, Springer, London, 2009.
