Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adolfsen, 2015, Futile cycling increases sensitivity toward oxidative stress in Escherichia coli, Metab. Eng., 29, 26, 10.1016/j.ymben.2015.02.006
Allison, 2011, Metabolite-enabled eradication of bacterial persisters by aminoglycosides, Nature, 473, 216, 10.1038/nature10069
Baek, 2011, Metabolic regulation of mycobacterial growth and antibiotic sensitivity, PLoS Biol., 9, e1001065, 10.1371/journal.pbio.1001065
Belenky, 2011, Microbiology. Antioxidant strategies to tolerate antibiotics, Science, 334, 915, 10.1126/science.1214823
Bergeron, 2010, HO∗ radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases, Proc. Natl. Acad. Sci. USA, 107, 5528, 10.1073/pnas.1000193107
Berglin, 1982, Potentiation by L-cysteine of the bactericidal effect of hydrogen peroxide in Escherichia coli, J. Bacteriol., 152, 81, 10.1128/jb.152.1.81-88.1982
Bonura, 1975, Enzymatic production of deoxyribonucleic acid double-strand breaks after ultraviolet irradiation of Escherichia coli K-12, J. Bacteriol., 121, 511, 10.1128/JB.121.2.511-517.1975
Brynildsen, 2013, Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production, Nat. Biotechnol., 31, 160, 10.1038/nbt.2458
Cadet, 2013, DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation, Cold Spring Harb. Perspect. Biol., 5, 5, 10.1101/cshperspect.a012559
Cadet, 2003, Oxidative damage to DNA: formation, measurement and biochemical features, Mutat. Res., 531, 5, 10.1016/j.mrfmmm.2003.09.001
Chamberlain, 1987, Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide, Photochem. Photobiol., 45, 625, 10.1111/j.1751-1097.1987.tb07389.x
Charbon, 2014, Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli, Nucleic Acids Res., 42, 13228, 10.1093/nar/gku1149
Cho, 2014, Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery, Cell, 159, 1300, 10.1016/j.cell.2014.11.017
Cohen, 2013, Microbial persistence and the road to drug resistance, Cell Host Microbe, 13, 632, 10.1016/j.chom.2013.05.009
Cunniffe, 2014, Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2′-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions, Mutat. Res., 762, 32, 10.1016/j.mrfmmm.2014.02.005
Curtis, 2012, Protein carbonylation and metabolic control systems, Trends Endocrinol. Metab., 23, 399, 10.1016/j.tem.2012.05.008
Dedon, 2008, The chemical toxicology of 2-deoxyribose oxidation in DNA, Chem. Res. Toxicol., 21, 206, 10.1021/tx700283c
Dong, 2015, Generation of reactive oxygen species by lethal attacks from competing microbes, Proc. Natl. Acad. Sci. USA, 112, 2181, 10.1073/pnas.1425007112
Douki, 2002, DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine, Chem. Res. Toxicol., 15, 445, 10.1021/tx0155909
Dwyer, 2007, Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli, Mol. Syst. Biol., 3, 91, 10.1038/msb4100135
Dwyer, 2012, Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis, Mol. Cell, 46, 561, 10.1016/j.molcel.2012.04.027
Dwyer, 2014, Antibiotics induce redox-related physiological alterations as part of their lethality, Proc. Natl. Acad. Sci. USA, 111, E2100, 10.1073/pnas.1401876111
Dwyer, 2015, Unraveling the physiological complexities of antibiotic lethality, Annu. Rev. Pharmacol. Toxicol., 55, 313, 10.1146/annurev-pharmtox-010814-124712
Eccles, 2010, Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage, Nucleic Acids Res., 38, 1123, 10.1093/nar/gkp1070
Evans, 2009, Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems, Anal. Chem., 81, 6656, 10.1021/ac901536h
Fedorova, 2014, Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies, Mass Spectrom. Rev., 33, 79, 10.1002/mas.21381
Foti, 2012, Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics, Science, 336, 315, 10.1126/science.1219192
Friedberg, 1996
Gomez, 2004, M. tuberculosis persistence, latency, and drug tolerance, Tuberculosis (Edinb.), 84, 29, 10.1016/j.tube.2003.08.003
Goswami, 2006, Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli, Antimicrob. Agents Chemother., 50, 949, 10.1128/AAC.50.3.949-954.2006
Gutierrez, 2013, β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity, Nat. Commun., 4, 1610, 10.1038/ncomms2607
Haghdoost, 2006, The nucleotide pool is a significant target for oxidative stress, Free Radic. Biol. Med., 41, 620, 10.1016/j.freeradbiomed.2006.05.003
Halliwell, 2007
Harley, 1978, Dependence of Escherichia coli hyperbaric oxygen toxicity on the lipid acyl chain composition, J. Bacteriol., 134, 808, 10.1128/JB.134.3.808-820.1978
Imlay, 2003, Pathways of oxidative damage, Annu. Rev. Microbiol., 57, 395, 10.1146/annurev.micro.57.030502.090938
Imlay, 2013, The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium, Nat. Rev. Microbiol., 11, 443, 10.1038/nrmicro3032
Imlay, 2015, Diagnosing oxidative stress in bacteria: not as easy as you might think, Curr. Opin. Microbiol., 24, 124, 10.1016/j.mib.2015.01.004
Imlay, 1988, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro, Science, 240, 640, 10.1126/science.2834821
Kalyanaraman, 2012, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radic. Biol. Med., 52, 1, 10.1016/j.freeradbiomed.2011.09.030
Kasai, 2002, Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis, Free Radic. Biol. Med., 33, 450, 10.1016/S0891-5849(02)00818-3
Kohanski, 2007, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, 797, 10.1016/j.cell.2007.06.049
Kohanski, 2008, Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell, 135, 679, 10.1016/j.cell.2008.09.038
Kohanski, 2010, Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis, Mol. Cell, 37, 311, 10.1016/j.molcel.2010.01.003
Kohanski, 2010, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 423, 10.1038/nrmicro2333
Konings, 1984, Radio- and thermosensitivity of E. coli K1060 after thiol depletion by diethylmaleate, Radiat. Environ. Biophys., 23, 245, 10.1007/BF01407596
Kouzminova, 2012, Chromosome demise in the wake of ligase-deficient replication, Mol. Microbiol., 84, 1079, 10.1111/j.1365-2958.2012.08076.x
Lim, 2004, Peroxyl radical mediated oxidative DNA base damage: implications for lipid peroxidation induced mutagenesis, Biochemistry, 43, 15339, 10.1021/bi048276x
Ling, 2012, Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger, Mol. Cell, 48, 713, 10.1016/j.molcel.2012.10.001
Liu, 2010, Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code, Antimicrob. Agents Chemother., 54, 1393, 10.1128/AAC.00906-09
Liu, 2012, Characterization of RNA damage under oxidative stress in Escherichia coli, Biol. Chem., 393, 123, 10.1515/hsz-2011-0247
Lobritz, 2015, Antibiotic efficacy is linked to bacterial cellular respiration, Proc. Natl. Acad. Sci. USA, 112, 8173, 10.1073/pnas.1509743112
Mahaseth, 2015, Cyanide enhances hydrogen peroxide toxicity by recruiting endogenous iron to trigger catastrophic chromosomal fragmentation, Mol. Microbiol., 96, 349, 10.1111/mmi.12938
Mancini, 2015, The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress, Mol. Microbiol., 96, 744, 10.1111/mmi.12967
Manuel, 2004, Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase, J. Biol. Chem., 279, 46930, 10.1074/jbc.M403944200
Marnett, 2002, Oxy radicals, lipid peroxidation and DNA damage, Toxicology, 181-182, 219, 10.1016/S0300-483X(02)00448-1
Masip, 2006, The many faces of glutathione in bacteria, Antioxid. Redox Signal., 8, 753, 10.1089/ars.2006.8.753
Méhi, 2014, Perturbation of iron homeostasis promotes the evolution of antibiotic resistance, Mol. Biol. Evol., 31, 2793, 10.1093/molbev/msu223
Merrikh, 2012, Replication-transcription conflicts in bacteria, Nat. Rev. Microbiol., 10, 449, 10.1038/nrmicro2800
Nair, 2013, Sub-lethal concentrations of antibiotics increase mutation frequency in the cystic fibrosis pathogen Pseudomonas aeruginosa, Lett. Appl. Microbiol., 56, 149, 10.1111/lam.12032
Nandakumar, 2014, Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis, Nat. Commun., 5, 4306, 10.1038/ncomms5306
Neeley, 2006, Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products, Chem. Res. Toxicol., 19, 491, 10.1021/tx0600043
Nyström, 2005, Role of oxidative carbonylation in protein quality control and senescence, EMBO J., 24, 1311, 10.1038/sj.emboj.7600599
Overath, 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA, 67, 606, 10.1073/pnas.67.2.606
Park, 2005, Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli, Proc. Natl. Acad. Sci. USA, 102, 9317, 10.1073/pnas.0502051102
Paulander, 2014, Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology, PLoS ONE, 9, e92231, 10.1371/journal.pone.0092231
Platt, 2003, Inhibition of protein hydroperoxide formation by protein thiols, Redox Rep., 8, 81, 10.1179/135100003125001288
Porter, 1995, Mechanisms of free radical oxidation of unsaturated lipids, Lipids, 30, 277, 10.1007/BF02536034
Pradenas, 2012, Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage, Microbiology, 158, 1279, 10.1099/mic.0.056903-0
Pradenas, 2013, Monounsaturated fatty acids are substrates for aldehyde generation in tellurite-exposed Escherichia coli, BioMed Res. Int., 2013, 563756, 10.1155/2013/563756
Renggli, 2013, Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics, J. Bacteriol., 195, 4067, 10.1128/JB.00393-13
Roots, 1975, Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells, Radiat. Res., 64, 306, 10.2307/3574267
Rosato, 2014, TCA cycle-mediated generation of ROS is a key mediator for HeR-MRSA survival under β-lactam antibiotic exposure, PLoS ONE, 9, e99605, 10.1371/journal.pone.0099605
Rush, 1990, Reactions of Iron(Ii) Nucleotide Complexes with Hydrogen-Peroxide, FEBS Lett., 261, 121, 10.1016/0014-5793(90)80651-X
Sakai, 2006, Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli, Genes Cells, 11, 767, 10.1111/j.1365-2443.2006.00982.x
Setoyama, 2011, Molecular actions of Escherichia coli MutT for control of spontaneous mutagenesis, Mutat. Res., 707, 9, 10.1016/j.mrfmmm.2010.12.001
Shatalin, 2011, H2S: a universal defense against antibiotics in bacteria, Science, 334, 986, 10.1126/science.1209855
Shee, 2013, Engineered proteins detect spontaneous DNA breakage in human and bacterial cells, eLife, 2, e01222, 10.7554/eLife.01222
Simandan, 1998, Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals, Biochem. J., 335, 233, 10.1042/bj3350233
Smirnova, 2012, Transmembrane glutathione cycling in growing Escherichia coli cells, Microbiol. Res., 167, 166, 10.1016/j.micres.2011.05.005
Soga, 2006, Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption, J. Biol. Chem., 281, 16768, 10.1074/jbc.M601876200
Stadtman, 2000, Protein oxidation, Ann. N Y Acad. Sci., 899, 191, 10.1111/j.1749-6632.2000.tb06187.x
Tanaka, 2007, Oxidized messenger RNA induces translation errors, Proc. Natl. Acad. Sci. USA, 104, 66, 10.1073/pnas.0609737104
Thomas, 2013, A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress, MBio, 4, 4
Valenzuela, 1991, The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress, Life Sci., 48, 301, 10.1016/0024-3205(91)90550-U
Van Acker, 2014, Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms, Trends Microbiol., 22, 326, 10.1016/j.tim.2014.02.001
Vaubourgeix, 2015, Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells, Cell Host Microbe, 17, 178, 10.1016/j.chom.2014.12.008
Wang, 2010, Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death, J. Antimicrob. Chemother., 65, 520, 10.1093/jac/dkp486
Wardman, 2007, Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects, Free Radic. Biol. Med., 43, 995, 10.1016/j.freeradbiomed.2007.06.026
Winterbourn, 2013, The biological chemistry of hydrogen peroxide, Methods Enzymol., 528, 3, 10.1016/B978-0-12-405881-1.00001-X
Xi, 2000, Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage, J. Bacteriol., 182, 5332, 10.1128/JB.182.19.5332-5341.2000
Yeom, 2010, Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species, J. Biol. Chem., 285, 22689, 10.1074/jbc.M110.127456
Zhao, 2015, Moving forward with reactive oxygen species involvement in antimicrobial lethality, J. Antimicrob. Chemother., 70, 639, 10.1093/jac/dku463