Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage

Cell Reports - Tập 13 Số 5 - Trang 968-980 - 2015
Peter Belenky1,2, Jonathan D. Ye1, Caroline Porter3,4,5, Nadia Cohen4,5, Michael A. Lobritz3,6,4,5, Thomas C. Ferrante5, Saloni R. Jain1,4, Benjamin J. Korry2, Eric G. Schwarz1, Graham C. Walker7, James J. Collins3,4,5
1Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
2Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
3Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
4Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
5Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
6Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02115, USA
7Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adolfsen, 2015, Futile cycling increases sensitivity toward oxidative stress in Escherichia coli, Metab. Eng., 29, 26, 10.1016/j.ymben.2015.02.006

Allison, 2011, Metabolite-enabled eradication of bacterial persisters by aminoglycosides, Nature, 473, 216, 10.1038/nature10069

Baek, 2011, Metabolic regulation of mycobacterial growth and antibiotic sensitivity, PLoS Biol., 9, e1001065, 10.1371/journal.pbio.1001065

Belenky, 2011, Microbiology. Antioxidant strategies to tolerate antibiotics, Science, 334, 915, 10.1126/science.1214823

Bergeron, 2010, HO∗ radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases, Proc. Natl. Acad. Sci. USA, 107, 5528, 10.1073/pnas.1000193107

Berglin, 1982, Potentiation by L-cysteine of the bactericidal effect of hydrogen peroxide in Escherichia coli, J. Bacteriol., 152, 81, 10.1128/jb.152.1.81-88.1982

Bonura, 1975, Enzymatic production of deoxyribonucleic acid double-strand breaks after ultraviolet irradiation of Escherichia coli K-12, J. Bacteriol., 121, 511, 10.1128/JB.121.2.511-517.1975

Brynildsen, 2013, Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production, Nat. Biotechnol., 31, 160, 10.1038/nbt.2458

Cadet, 2013, DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation, Cold Spring Harb. Perspect. Biol., 5, 5, 10.1101/cshperspect.a012559

Cadet, 2003, Oxidative damage to DNA: formation, measurement and biochemical features, Mutat. Res., 531, 5, 10.1016/j.mrfmmm.2003.09.001

Chamberlain, 1987, Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide, Photochem. Photobiol., 45, 625, 10.1111/j.1751-1097.1987.tb07389.x

Charbon, 2014, Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli, Nucleic Acids Res., 42, 13228, 10.1093/nar/gku1149

Cho, 2014, Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery, Cell, 159, 1300, 10.1016/j.cell.2014.11.017

Cohen, 2013, Microbial persistence and the road to drug resistance, Cell Host Microbe, 13, 632, 10.1016/j.chom.2013.05.009

Cunniffe, 2014, Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2′-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions, Mutat. Res., 762, 32, 10.1016/j.mrfmmm.2014.02.005

Curtis, 2012, Protein carbonylation and metabolic control systems, Trends Endocrinol. Metab., 23, 399, 10.1016/j.tem.2012.05.008

Dedon, 2008, The chemical toxicology of 2-deoxyribose oxidation in DNA, Chem. Res. Toxicol., 21, 206, 10.1021/tx700283c

Dong, 2015, Generation of reactive oxygen species by lethal attacks from competing microbes, Proc. Natl. Acad. Sci. USA, 112, 2181, 10.1073/pnas.1425007112

Douki, 2002, DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine, Chem. Res. Toxicol., 15, 445, 10.1021/tx0155909

Dwyer, 2007, Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli, Mol. Syst. Biol., 3, 91, 10.1038/msb4100135

Dwyer, 2012, Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis, Mol. Cell, 46, 561, 10.1016/j.molcel.2012.04.027

Dwyer, 2014, Antibiotics induce redox-related physiological alterations as part of their lethality, Proc. Natl. Acad. Sci. USA, 111, E2100, 10.1073/pnas.1401876111

Dwyer, 2015, Unraveling the physiological complexities of antibiotic lethality, Annu. Rev. Pharmacol. Toxicol., 55, 313, 10.1146/annurev-pharmtox-010814-124712

Eccles, 2010, Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage, Nucleic Acids Res., 38, 1123, 10.1093/nar/gkp1070

Evans, 2009, Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems, Anal. Chem., 81, 6656, 10.1021/ac901536h

Fedorova, 2014, Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies, Mass Spectrom. Rev., 33, 79, 10.1002/mas.21381

Foti, 2012, Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics, Science, 336, 315, 10.1126/science.1219192

Friedberg, 1996

Gomez, 2004, M. tuberculosis persistence, latency, and drug tolerance, Tuberculosis (Edinb.), 84, 29, 10.1016/j.tube.2003.08.003

Goswami, 2006, Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli, Antimicrob. Agents Chemother., 50, 949, 10.1128/AAC.50.3.949-954.2006

Gutierrez, 2013, β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity, Nat. Commun., 4, 1610, 10.1038/ncomms2607

Haghdoost, 2006, The nucleotide pool is a significant target for oxidative stress, Free Radic. Biol. Med., 41, 620, 10.1016/j.freeradbiomed.2006.05.003

Halliwell, 2007

Harley, 1978, Dependence of Escherichia coli hyperbaric oxygen toxicity on the lipid acyl chain composition, J. Bacteriol., 134, 808, 10.1128/JB.134.3.808-820.1978

Imlay, 2003, Pathways of oxidative damage, Annu. Rev. Microbiol., 57, 395, 10.1146/annurev.micro.57.030502.090938

Imlay, 2013, The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium, Nat. Rev. Microbiol., 11, 443, 10.1038/nrmicro3032

Imlay, 2015, Diagnosing oxidative stress in bacteria: not as easy as you might think, Curr. Opin. Microbiol., 24, 124, 10.1016/j.mib.2015.01.004

Imlay, 1988, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro, Science, 240, 640, 10.1126/science.2834821

Kalyanaraman, 2012, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radic. Biol. Med., 52, 1, 10.1016/j.freeradbiomed.2011.09.030

Kasai, 2002, Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis, Free Radic. Biol. Med., 33, 450, 10.1016/S0891-5849(02)00818-3

Kohanski, 2007, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, 797, 10.1016/j.cell.2007.06.049

Kohanski, 2008, Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell, 135, 679, 10.1016/j.cell.2008.09.038

Kohanski, 2010, Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis, Mol. Cell, 37, 311, 10.1016/j.molcel.2010.01.003

Kohanski, 2010, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 423, 10.1038/nrmicro2333

Konings, 1984, Radio- and thermosensitivity of E. coli K1060 after thiol depletion by diethylmaleate, Radiat. Environ. Biophys., 23, 245, 10.1007/BF01407596

Kouzminova, 2012, Chromosome demise in the wake of ligase-deficient replication, Mol. Microbiol., 84, 1079, 10.1111/j.1365-2958.2012.08076.x

Lim, 2004, Peroxyl radical mediated oxidative DNA base damage: implications for lipid peroxidation induced mutagenesis, Biochemistry, 43, 15339, 10.1021/bi048276x

Ling, 2012, Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger, Mol. Cell, 48, 713, 10.1016/j.molcel.2012.10.001

Liu, 2010, Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code, Antimicrob. Agents Chemother., 54, 1393, 10.1128/AAC.00906-09

Liu, 2012, Characterization of RNA damage under oxidative stress in Escherichia coli, Biol. Chem., 393, 123, 10.1515/hsz-2011-0247

Lobritz, 2015, Antibiotic efficacy is linked to bacterial cellular respiration, Proc. Natl. Acad. Sci. USA, 112, 8173, 10.1073/pnas.1509743112

Mahaseth, 2015, Cyanide enhances hydrogen peroxide toxicity by recruiting endogenous iron to trigger catastrophic chromosomal fragmentation, Mol. Microbiol., 96, 349, 10.1111/mmi.12938

Mancini, 2015, The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress, Mol. Microbiol., 96, 744, 10.1111/mmi.12967

Manuel, 2004, Reaction intermediates in the catalytic mechanism of Escherichia coli MutY DNA glycosylase, J. Biol. Chem., 279, 46930, 10.1074/jbc.M403944200

Marnett, 2002, Oxy radicals, lipid peroxidation and DNA damage, Toxicology, 181-182, 219, 10.1016/S0300-483X(02)00448-1

Masip, 2006, The many faces of glutathione in bacteria, Antioxid. Redox Signal., 8, 753, 10.1089/ars.2006.8.753

Méhi, 2014, Perturbation of iron homeostasis promotes the evolution of antibiotic resistance, Mol. Biol. Evol., 31, 2793, 10.1093/molbev/msu223

Merrikh, 2012, Replication-transcription conflicts in bacteria, Nat. Rev. Microbiol., 10, 449, 10.1038/nrmicro2800

Nair, 2013, Sub-lethal concentrations of antibiotics increase mutation frequency in the cystic fibrosis pathogen Pseudomonas aeruginosa, Lett. Appl. Microbiol., 56, 149, 10.1111/lam.12032

Nandakumar, 2014, Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis, Nat. Commun., 5, 4306, 10.1038/ncomms5306

Neeley, 2006, Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products, Chem. Res. Toxicol., 19, 491, 10.1021/tx0600043

Nyström, 2005, Role of oxidative carbonylation in protein quality control and senescence, EMBO J., 24, 1311, 10.1038/sj.emboj.7600599

Overath, 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA, 67, 606, 10.1073/pnas.67.2.606

Park, 2005, Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli, Proc. Natl. Acad. Sci. USA, 102, 9317, 10.1073/pnas.0502051102

Paulander, 2014, Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology, PLoS ONE, 9, e92231, 10.1371/journal.pone.0092231

Platt, 2003, Inhibition of protein hydroperoxide formation by protein thiols, Redox Rep., 8, 81, 10.1179/135100003125001288

Porter, 1995, Mechanisms of free radical oxidation of unsaturated lipids, Lipids, 30, 277, 10.1007/BF02536034

Pradenas, 2012, Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage, Microbiology, 158, 1279, 10.1099/mic.0.056903-0

Pradenas, 2013, Monounsaturated fatty acids are substrates for aldehyde generation in tellurite-exposed Escherichia coli, BioMed Res. Int., 2013, 563756, 10.1155/2013/563756

Renggli, 2013, Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics, J. Bacteriol., 195, 4067, 10.1128/JB.00393-13

Roots, 1975, Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells, Radiat. Res., 64, 306, 10.2307/3574267

Rosato, 2014, TCA cycle-mediated generation of ROS is a key mediator for HeR-MRSA survival under β-lactam antibiotic exposure, PLoS ONE, 9, e99605, 10.1371/journal.pone.0099605

Rush, 1990, Reactions of Iron(Ii) Nucleotide Complexes with Hydrogen-Peroxide, FEBS Lett., 261, 121, 10.1016/0014-5793(90)80651-X

Sakai, 2006, Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli, Genes Cells, 11, 767, 10.1111/j.1365-2443.2006.00982.x

Setoyama, 2011, Molecular actions of Escherichia coli MutT for control of spontaneous mutagenesis, Mutat. Res., 707, 9, 10.1016/j.mrfmmm.2010.12.001

Shatalin, 2011, H2S: a universal defense against antibiotics in bacteria, Science, 334, 986, 10.1126/science.1209855

Shee, 2013, Engineered proteins detect spontaneous DNA breakage in human and bacterial cells, eLife, 2, e01222, 10.7554/eLife.01222

Simandan, 1998, Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals, Biochem. J., 335, 233, 10.1042/bj3350233

Smirnova, 2012, Transmembrane glutathione cycling in growing Escherichia coli cells, Microbiol. Res., 167, 166, 10.1016/j.micres.2011.05.005

Soga, 2006, Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption, J. Biol. Chem., 281, 16768, 10.1074/jbc.M601876200

Stadtman, 2000, Protein oxidation, Ann. N Y Acad. Sci., 899, 191, 10.1111/j.1749-6632.2000.tb06187.x

Tanaka, 2007, Oxidized messenger RNA induces translation errors, Proc. Natl. Acad. Sci. USA, 104, 66, 10.1073/pnas.0609737104

Thomas, 2013, A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress, MBio, 4, 4

Valenzuela, 1991, The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress, Life Sci., 48, 301, 10.1016/0024-3205(91)90550-U

Van Acker, 2014, Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms, Trends Microbiol., 22, 326, 10.1016/j.tim.2014.02.001

Vaubourgeix, 2015, Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells, Cell Host Microbe, 17, 178, 10.1016/j.chom.2014.12.008

Wang, 2010, Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death, J. Antimicrob. Chemother., 65, 520, 10.1093/jac/dkp486

Wardman, 2007, Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects, Free Radic. Biol. Med., 43, 995, 10.1016/j.freeradbiomed.2007.06.026

Winterbourn, 2013, The biological chemistry of hydrogen peroxide, Methods Enzymol., 528, 3, 10.1016/B978-0-12-405881-1.00001-X

Wright, 2012, Antibiotics: a new hope, Chem. Biol., 19, 3, 10.1016/j.chembiol.2011.10.019

Xi, 2000, Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage, J. Bacteriol., 182, 5332, 10.1128/JB.182.19.5332-5341.2000

Yeom, 2010, Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species, J. Biol. Chem., 285, 22689, 10.1074/jbc.M110.127456

Zhao, 2015, Moving forward with reactive oxygen species involvement in antimicrobial lethality, J. Antimicrob. Chemother., 70, 639, 10.1093/jac/dku463

Zhou, 2005, Chemical and biological evidence for base propenals as the major source of the endogenous M1dG adduct in cellular DNA, J. Biol. Chem., 280, 25377, 10.1074/jbc.M503079200